Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
8330.r2 8330.r \( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.239821889$ $[1, 1, 1, 55, -393]$ \(y^2+xy+y=x^3+x^2+55x-393\) 3.4.0.a.1, 21.8.0-3.a.1.1, 68.2.0.a.1, 204.8.0.?, 1428.16.0.? $[(7, 16)]$
8330.x2 8330.x \( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 2694, 142820]$ \(y^2+xy=x^3+2694x+142820\) 3.8.0-3.a.1.2, 68.2.0.a.1, 204.16.0.? $[ ]$
41650.k2 41650.k \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 67350, 17852500]$ \(y^2+xy=x^3+x^2+67350x+17852500\) 3.4.0.a.1, 15.8.0-3.a.1.2, 68.2.0.a.1, 204.8.0.?, 1020.16.0.? $[ ]$
41650.z2 41650.z \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 1374, -51852]$ \(y^2+xy+y=x^3+1374x-51852\) 3.4.0.a.1, 68.2.0.a.1, 105.8.0.?, 204.8.0.?, 7140.16.0.? $[ ]$
66640.i2 66640.i \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 43104, -9140480]$ \(y^2=x^3-x^2+43104x-9140480\) 3.4.0.a.1, 12.8.0-3.a.1.1, 68.2.0.a.1, 102.8.0.?, 204.16.0.? $[ ]$
66640.cb2 66640.cb \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $2.526162680$ $[0, 1, 0, 880, 26900]$ \(y^2=x^3+x^2+880x+26900\) 3.4.0.a.1, 68.2.0.a.1, 84.8.0.?, 204.8.0.?, 714.8.0.?, $\ldots$ $[(20, 230)]$
74970.d2 74970.d \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.886526346$ $[1, -1, 0, 495, 11101]$ \(y^2+xy=x^3-x^2+495x+11101\) 3.4.0.a.1, 21.8.0-3.a.1.2, 68.2.0.a.1, 204.8.0.?, 1428.16.0.? $[(18, 151)]$
74970.bh2 74970.bh \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 24246, -3856140]$ \(y^2+xy=x^3-x^2+24246x-3856140\) 3.8.0-3.a.1.1, 68.2.0.a.1, 204.16.0.? $[ ]$
141610.cc2 141610.cc \( 2 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.581319114$ $[1, 1, 1, 778560, 700896097]$ \(y^2+xy+y=x^3+x^2+778560x+700896097\) 3.4.0.a.1, 12.8.0-3.a.1.3, 51.8.0-3.a.1.2, 68.2.0.a.1, 204.16.0.? $[(-203, 23221)]$
141610.ck2 141610.ck \( 2 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.421359291$ $[1, 0, 0, 15889, -2041159]$ \(y^2+xy=x^3+15889x-2041159\) 3.4.0.a.1, 68.2.0.a.1, 84.8.0.?, 204.8.0.?, 357.8.0.?, $\ldots$ $[(806, 22717)]$
266560.bv2 266560.bv \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 3519, 211681]$ \(y^2=x^3-x^2+3519x+211681\) 3.4.0.a.1, 68.2.0.a.1, 168.8.0.?, 204.8.0.?, 2856.16.0.? $[ ]$
266560.cb2 266560.cb \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 17 \) $2$ $\mathsf{trivial}$ $2.599648101$ $[0, -1, 0, 172415, 72951425]$ \(y^2=x^3-x^2+172415x+72951425\) 3.4.0.a.1, 24.8.0-3.a.1.2, 68.2.0.a.1, 204.8.0.?, 408.16.0.? $[(6305, 501760), (-65, 7840)]$
266560.fe2 266560.fe \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $2.917788381$ $[0, 1, 0, 3519, -211681]$ \(y^2=x^3+x^2+3519x-211681\) 3.4.0.a.1, 68.2.0.a.1, 168.8.0.?, 204.8.0.?, 2856.16.0.? $[(1147, 38912)]$
266560.gh2 266560.gh \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $17.59931745$ $[0, 1, 0, 172415, -72951425]$ \(y^2=x^3+x^2+172415x-72951425\) 3.4.0.a.1, 24.8.0-3.a.1.4, 68.2.0.a.1, 204.8.0.?, 408.16.0.? $[(89311305/547, 373103256560/547)]$
333200.bt2 333200.bt \( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $5.412144109$ $[0, -1, 0, 21992, 3318512]$ \(y^2=x^3-x^2+21992x+3318512\) 3.4.0.a.1, 68.2.0.a.1, 204.8.0.?, 420.8.0.?, 3570.8.0.?, $\ldots$ $[(298/3, 54550/3)]$
333200.ew2 333200.ew \( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $5.737865288$ $[0, 1, 0, 1077592, -1140404812]$ \(y^2=x^3+x^2+1077592x-1140404812\) 3.4.0.a.1, 60.8.0-3.a.1.2, 68.2.0.a.1, 204.8.0.?, 510.8.0.?, $\ldots$ $[(2348, 119750)]$
374850.jg2 374850.jg \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $4.864245133$ $[1, -1, 1, 606145, -481411353]$ \(y^2+xy+y=x^3-x^2+606145x-481411353\) 3.4.0.a.1, 15.8.0-3.a.1.1, 68.2.0.a.1, 204.8.0.?, 1020.16.0.? $[(549, 3800)]$
374850.jy2 374850.jy \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.524286967$ $[1, -1, 1, 12370, 1399997]$ \(y^2+xy+y=x^3-x^2+12370x+1399997\) 3.4.0.a.1, 68.2.0.a.1, 105.8.0.?, 204.8.0.?, 7140.16.0.? $[(-71, 435)]$
  displayed columns for results