| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 190.a1 |
190b1 |
190.a |
190b |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19 \) |
\( - 2 \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.131821481$ |
$1$ |
|
$6$ |
$8$ |
$-0.744964$ |
$357911/950$ |
$0.81125$ |
$2.68061$ |
$[1, 1, 0, 2, 2]$ |
\(y^2+xy=x^3+x^2+2x+2\) |
152.2.0.? |
$[(1, 2)]$ |
| 950.e1 |
950d1 |
950.e |
950d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2 \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$192$ |
$0.059755$ |
$357911/950$ |
$0.81125$ |
$3.45978$ |
$[1, 0, 0, 37, 167]$ |
\(y^2+xy=x^3+37x+167\) |
152.2.0.? |
$[ ]$ |
| 1520.g1 |
1520h1 |
1520.g |
1520h |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{13} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.594651921$ |
$1$ |
|
$4$ |
$192$ |
$-0.051817$ |
$357911/950$ |
$0.81125$ |
$3.05509$ |
$[0, 1, 0, 24, -76]$ |
\(y^2=x^3+x^2+24x-76\) |
152.2.0.? |
$[(4, 10)]$ |
| 1710.r1 |
1710q1 |
1710.r |
1710q |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) |
\( - 2 \cdot 3^{6} \cdot 5^{2} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$240$ |
$-0.195658$ |
$357911/950$ |
$0.81125$ |
$2.77488$ |
$[1, -1, 1, 13, -39]$ |
\(y^2+xy+y=x^3-x^2+13x-39\) |
152.2.0.? |
$[ ]$ |
| 3610.h1 |
3610g1 |
3610.h |
3610g |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 5^{2} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.302278113$ |
$1$ |
|
$0$ |
$2880$ |
$0.727256$ |
$357911/950$ |
$0.81125$ |
$3.87377$ |
$[1, 0, 0, 534, -8950]$ |
\(y^2+xy=x^3+534x-8950\) |
152.2.0.? |
$[(367/2, 6853/2)]$ |
| 6080.i1 |
6080t1 |
6080.i |
6080t |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 19 \) |
\( - 2^{19} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.495719745$ |
$1$ |
|
$4$ |
$1536$ |
$0.294757$ |
$357911/950$ |
$0.81125$ |
$3.04632$ |
$[0, -1, 0, 95, -703]$ |
\(y^2=x^3-x^2+95x-703\) |
152.2.0.? |
$[(29, 160)]$ |
| 6080.r1 |
6080i1 |
6080.r |
6080i |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 19 \) |
\( - 2^{19} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.481989983$ |
$1$ |
|
$4$ |
$1536$ |
$0.294757$ |
$357911/950$ |
$0.81125$ |
$3.04632$ |
$[0, 1, 0, 95, 703]$ |
\(y^2=x^3+x^2+95x+703\) |
152.2.0.? |
$[(3, 32)]$ |
| 7600.g1 |
7600o1 |
7600.g |
7600o |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \) |
\( - 2^{13} \cdot 5^{8} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.730421123$ |
$1$ |
|
$4$ |
$4608$ |
$0.752902$ |
$357911/950$ |
$0.81125$ |
$3.58550$ |
$[0, -1, 0, 592, -10688]$ |
\(y^2=x^3-x^2+592x-10688\) |
152.2.0.? |
$[(32, 200)]$ |
| 8550.l1 |
8550d1 |
8550.l |
8550d |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2 \cdot 3^{6} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$0.609061$ |
$357911/950$ |
$0.81125$ |
$3.34820$ |
$[1, -1, 0, 333, -4509]$ |
\(y^2+xy=x^3-x^2+333x-4509\) |
152.2.0.? |
$[ ]$ |
| 9310.i1 |
9310k1 |
9310.i |
9310k |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2 \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3024$ |
$0.227991$ |
$357911/950$ |
$0.81125$ |
$2.81663$ |
$[1, 0, 1, 72, -444]$ |
\(y^2+xy+y=x^3+72x-444\) |
152.2.0.? |
$[ ]$ |
| 13680.bl1 |
13680bs1 |
13680.bl |
13680bs |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 19 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.669407217$ |
$1$ |
|
$4$ |
$5760$ |
$0.497489$ |
$357911/950$ |
$0.81125$ |
$3.04238$ |
$[0, 0, 0, 213, 2266]$ |
\(y^2=x^3+213x+2266\) |
152.2.0.? |
$[(-3, 40)]$ |
| 18050.d1 |
18050h1 |
18050.d |
18050h |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 5^{8} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$1.531975$ |
$357911/950$ |
$0.81125$ |
$4.22293$ |
$[1, 1, 0, 13350, -1118750]$ |
\(y^2+xy=x^3+x^2+13350x-1118750\) |
152.2.0.? |
$[ ]$ |
| 22990.z1 |
22990y1 |
22990.z |
22990y |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 19 \) |
\( - 2 \cdot 5^{2} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.453984$ |
$357911/950$ |
$0.81125$ |
$2.83313$ |
$[1, 1, 1, 179, -1671]$ |
\(y^2+xy+y=x^3+x^2+179x-1671\) |
152.2.0.? |
$[ ]$ |
| 28880.k1 |
28880u1 |
28880.k |
28880u |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{13} \cdot 5^{2} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.315038237$ |
$1$ |
|
$6$ |
$69120$ |
$1.420403$ |
$357911/950$ |
$0.81125$ |
$3.89933$ |
$[0, -1, 0, 8544, 572800]$ |
\(y^2=x^3-x^2+8544x+572800\) |
152.2.0.? |
$[(184, 2888)]$ |
| 30400.s1 |
30400k1 |
30400.s |
30400k |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{19} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36864$ |
$1.099476$ |
$357911/950$ |
$0.81125$ |
$3.50686$ |
$[0, -1, 0, 2367, 83137]$ |
\(y^2=x^3-x^2+2367x+83137\) |
152.2.0.? |
$[ ]$ |
| 30400.bj1 |
30400bd1 |
30400.bj |
30400bd |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{19} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36864$ |
$1.099476$ |
$357911/950$ |
$0.81125$ |
$3.50686$ |
$[0, 1, 0, 2367, -83137]$ |
\(y^2=x^3+x^2+2367x-83137\) |
152.2.0.? |
$[ ]$ |
| 32110.x1 |
32110bg1 |
32110.x |
32110bg |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 13^{2} \cdot 19 \) |
\( - 2 \cdot 5^{2} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17952$ |
$0.537511$ |
$357911/950$ |
$0.81125$ |
$2.83850$ |
$[1, 1, 1, 250, 2985]$ |
\(y^2+xy+y=x^3+x^2+250x+2985\) |
152.2.0.? |
$[ ]$ |
| 32490.s1 |
32490u1 |
32490.s |
32490u |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{2} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$86400$ |
$1.276562$ |
$357911/950$ |
$0.81125$ |
$3.68897$ |
$[1, -1, 0, 4806, 241650]$ |
\(y^2+xy=x^3-x^2+4806x+241650\) |
152.2.0.? |
$[ ]$ |
| 46550.ce1 |
46550ck1 |
46550.ce |
46550ck |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2 \cdot 5^{8} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$72576$ |
$1.032709$ |
$357911/950$ |
$0.81125$ |
$3.29330$ |
$[1, 1, 1, 1812, -55469]$ |
\(y^2+xy+y=x^3+x^2+1812x-55469\) |
152.2.0.? |
$[ ]$ |
| 54720.ba1 |
54720bd1 |
54720.ba |
54720bd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 19 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.988701962$ |
$1$ |
|
$2$ |
$46080$ |
$0.844063$ |
$357911/950$ |
$0.81125$ |
$3.03700$ |
$[0, 0, 0, 852, -18128]$ |
\(y^2=x^3+852x-18128\) |
152.2.0.? |
$[(21, 95)]$ |
| 54720.bl1 |
54720dk1 |
54720.bl |
54720dk |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 19 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.204758938$ |
$1$ |
|
$2$ |
$46080$ |
$0.844063$ |
$357911/950$ |
$0.81125$ |
$3.03700$ |
$[0, 0, 0, 852, 18128]$ |
\(y^2=x^3+852x+18128\) |
152.2.0.? |
$[(-16, 20)]$ |
| 54910.l1 |
54910j1 |
54910.l |
54910j |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17^{2} \cdot 19 \) |
\( - 2 \cdot 5^{2} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$35200$ |
$0.671642$ |
$357911/950$ |
$0.81125$ |
$2.84644$ |
$[1, 0, 1, 427, 6478]$ |
\(y^2+xy+y=x^3+427x+6478\) |
152.2.0.? |
$[ ]$ |
| 68400.cp1 |
68400fe1 |
68400.cp |
68400fe |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$1.302208$ |
$357911/950$ |
$0.81125$ |
$3.46994$ |
$[0, 0, 0, 5325, 283250]$ |
\(y^2=x^3+5325x+283250\) |
152.2.0.? |
$[ ]$ |
| 74480.bc1 |
74480cg1 |
74480.bc |
74480cg |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{13} \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$72576$ |
$0.921138$ |
$357911/950$ |
$0.81125$ |
$3.03598$ |
$[0, -1, 0, 1160, 28400]$ |
\(y^2=x^3-x^2+1160x+28400\) |
152.2.0.? |
$[ ]$ |
| 83790.dr1 |
83790ee1 |
83790.dr |
83790ee |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2 \cdot 3^{6} \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$6.423529541$ |
$1$ |
|
$0$ |
$90720$ |
$0.777297$ |
$357911/950$ |
$0.81125$ |
$2.85217$ |
$[1, -1, 1, 652, 11981]$ |
\(y^2+xy+y=x^3-x^2+652x+11981\) |
152.2.0.? |
$[(115/6, 25187/6)]$ |
| 100510.d1 |
100510f1 |
100510.d |
100510f |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19 \cdot 23^{2} \) |
\( - 2 \cdot 5^{2} \cdot 19 \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96976$ |
$0.822783$ |
$357911/950$ |
$0.81125$ |
$2.85450$ |
$[1, 1, 0, 783, -15629]$ |
\(y^2+xy=x^3+x^2+783x-15629\) |
152.2.0.? |
$[ ]$ |
| 114950.bg1 |
114950ba1 |
114950.bg |
114950ba |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2 \cdot 5^{8} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$3.305668848$ |
$1$ |
|
$2$ |
$276480$ |
$1.258703$ |
$357911/950$ |
$0.81125$ |
$3.27055$ |
$[1, 0, 1, 4474, -217802]$ |
\(y^2+xy+y=x^3+4474x-217802\) |
152.2.0.? |
$[(1462, 55231)]$ |
| 115520.bc1 |
115520y1 |
115520.bc |
115520y |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 19^{2} \) |
\( - 2^{19} \cdot 5^{2} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.997533480$ |
$1$ |
|
$2$ |
$552960$ |
$1.766975$ |
$357911/950$ |
$0.81125$ |
$3.79238$ |
$[0, -1, 0, 34175, -4616575]$ |
\(y^2=x^3-x^2+34175x-4616575\) |
152.2.0.? |
$[(355, 7220)]$ |
| 115520.cf1 |
115520cs1 |
115520.cf |
115520cs |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 19^{2} \) |
\( - 2^{19} \cdot 5^{2} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552960$ |
$1.766975$ |
$357911/950$ |
$0.81125$ |
$3.79238$ |
$[0, 1, 0, 34175, 4616575]$ |
\(y^2=x^3+x^2+34175x+4616575\) |
152.2.0.? |
$[ ]$ |
| 144400.cc1 |
144400bh1 |
144400.cc |
144400bh |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{13} \cdot 5^{8} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.728859719$ |
$1$ |
|
$2$ |
$1658880$ |
$2.225121$ |
$357911/950$ |
$0.81125$ |
$4.18391$ |
$[0, 1, 0, 213592, 72027188]$ |
\(y^2=x^3+x^2+213592x+72027188\) |
152.2.0.? |
$[(2723, 144400)]$ |
| 159790.y1 |
159790j1 |
159790.y |
159790j |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19 \cdot 29^{2} \) |
\( - 2 \cdot 5^{2} \cdot 19 \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$8.232125283$ |
$1$ |
|
$0$ |
$196000$ |
$0.938684$ |
$357911/950$ |
$0.81125$ |
$2.86013$ |
$[1, 0, 0, 1244, 32086]$ |
\(y^2+xy=x^3+1244x+32086\) |
152.2.0.? |
$[(8319/2, 750601/2)]$ |
| 160550.br1 |
160550dz1 |
160550.br |
160550dz |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2 \cdot 5^{8} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$430848$ |
$1.342230$ |
$357911/950$ |
$0.81125$ |
$3.26301$ |
$[1, 0, 1, 6249, 360648]$ |
\(y^2+xy+y=x^3+6249x+360648\) |
152.2.0.? |
$[ ]$ |
| 162450.ed1 |
162450bh1 |
162450.ed |
162450bh |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{8} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2073600$ |
$2.081280$ |
$357911/950$ |
$0.81125$ |
$3.99897$ |
$[1, -1, 1, 120145, 30326397]$ |
\(y^2+xy+y=x^3-x^2+120145x+30326397\) |
152.2.0.? |
$[ ]$ |
| 176890.dh1 |
176890t1 |
176890.dh |
176890t |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$4.260612000$ |
$1$ |
|
$0$ |
$1088640$ |
$1.700211$ |
$357911/950$ |
$0.81125$ |
$3.59235$ |
$[1, 1, 1, 26165, 3096015]$ |
\(y^2+xy+y=x^3+x^2+26165x+3096015\) |
152.2.0.? |
$[(4053/4, 318567/4)]$ |
| 182590.g1 |
182590s1 |
182590.g |
182590s |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19 \cdot 31^{2} \) |
\( - 2 \cdot 5^{2} \cdot 19 \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221760$ |
$0.972030$ |
$357911/950$ |
$0.81125$ |
$2.86167$ |
$[1, 0, 1, 1421, -38948]$ |
\(y^2+xy+y=x^3+1421x-38948\) |
152.2.0.? |
$[ ]$ |
| 183920.bv1 |
183920bk1 |
183920.bv |
183920bk |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 11^{2} \cdot 19 \) |
\( - 2^{13} \cdot 5^{2} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1.003441205$ |
$1$ |
|
$4$ |
$276480$ |
$1.147131$ |
$357911/950$ |
$0.81125$ |
$3.03330$ |
$[0, 1, 0, 2864, 112660]$ |
\(y^2=x^3+x^2+2864x+112660\) |
152.2.0.? |
$[(282, 4840)]$ |
| 206910.cf1 |
206910df1 |
206910.cf |
206910df |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 19 \) |
\( - 2 \cdot 3^{6} \cdot 5^{2} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.741457337$ |
$1$ |
|
$0$ |
$345600$ |
$1.003290$ |
$357911/950$ |
$0.81125$ |
$2.86309$ |
$[1, -1, 0, 1611, 46723]$ |
\(y^2+xy=x^3-x^2+1611x+46723\) |
152.2.0.? |
$[(243/2, 4597/2)]$ |
| 256880.cx1 |
256880cx1 |
256880.cx |
256880cx |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 13^{2} \cdot 19 \) |
\( - 2^{13} \cdot 5^{2} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.874099848$ |
$1$ |
|
$2$ |
$430848$ |
$1.230658$ |
$357911/950$ |
$0.81125$ |
$3.03240$ |
$[0, 1, 0, 4000, -183052]$ |
\(y^2=x^3+x^2+4000x-183052\) |
152.2.0.? |
$[(146, 1880)]$ |
| 259920.fm1 |
259920fm1 |
259920.fm |
259920fm |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{2} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$3.881014962$ |
$1$ |
|
$2$ |
$2073600$ |
$1.969709$ |
$357911/950$ |
$0.81125$ |
$3.74084$ |
$[0, 0, 0, 76893, -15542494]$ |
\(y^2=x^3+76893x-15542494\) |
152.2.0.? |
$[(4142, 267140)]$ |
| 260110.x1 |
260110x1 |
260110.x |
260110x |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19 \cdot 37^{2} \) |
\( - 2 \cdot 5^{2} \cdot 19 \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$1.060495$ |
$357911/950$ |
$0.81125$ |
$2.86560$ |
$[1, 1, 1, 2025, 67267]$ |
\(y^2+xy+y=x^3+x^2+2025x+67267\) |
152.2.0.? |
$[ ]$ |
| 273600.ga1 |
273600ga1 |
273600.ga |
273600ga |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{8} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1.962064827$ |
$1$ |
|
$2$ |
$1105920$ |
$1.648783$ |
$357911/950$ |
$0.81125$ |
$3.41791$ |
$[0, 0, 0, 21300, 2266000]$ |
\(y^2=x^3+21300x+2266000\) |
152.2.0.? |
$[(210, 4000)]$ |
| 273600.kc1 |
273600kc1 |
273600.kc |
273600kc |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{8} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$3.486511747$ |
$1$ |
|
$2$ |
$1105920$ |
$1.648783$ |
$357911/950$ |
$0.81125$ |
$3.41791$ |
$[0, 0, 0, 21300, -2266000]$ |
\(y^2=x^3+21300x-2266000\) |
152.2.0.? |
$[(206, 3296)]$ |
| 274550.bp1 |
274550bp1 |
274550.bp |
274550bp |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \cdot 19 \) |
\( - 2 \cdot 5^{8} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$844800$ |
$1.476362$ |
$357911/950$ |
$0.81125$ |
$3.25174$ |
$[1, 1, 1, 10687, 809781]$ |
\(y^2+xy+y=x^3+x^2+10687x+809781\) |
152.2.0.? |
$[ ]$ |
| 288990.bg1 |
288990bg1 |
288990.bg |
288990bg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 19 \) |
\( - 2 \cdot 3^{6} \cdot 5^{2} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$7.304117161$ |
$1$ |
|
$0$ |
$538560$ |
$1.086817$ |
$357911/950$ |
$0.81125$ |
$2.86672$ |
$[1, -1, 0, 2250, -78350]$ |
\(y^2+xy=x^3-x^2+2250x-78350\) |
152.2.0.? |
$[(1425/7, 31060/7)]$ |
| 297920.bx1 |
297920bx1 |
297920.bx |
297920bx |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{19} \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$4.076783007$ |
$1$ |
|
$10$ |
$580608$ |
$1.267712$ |
$357911/950$ |
$0.81125$ |
$3.03202$ |
$[0, -1, 0, 4639, -231839]$ |
\(y^2=x^3-x^2+4639x-231839\) |
152.2.0.? |
$[(41, 160), (105, 1184)]$ |
| 297920.fi1 |
297920fi1 |
297920.fi |
297920fi |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{19} \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$580608$ |
$1.267712$ |
$357911/950$ |
$0.81125$ |
$3.03202$ |
$[0, 1, 0, 4639, 231839]$ |
\(y^2=x^3+x^2+4639x+231839\) |
152.2.0.? |
$[ ]$ |
| 319390.d1 |
319390d1 |
319390.d |
319390d |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19 \cdot 41^{2} \) |
\( - 2 \cdot 5^{2} \cdot 19 \cdot 41^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$563200$ |
$1.111822$ |
$357911/950$ |
$0.81125$ |
$2.86778$ |
$[1, 0, 1, 2486, 90586]$ |
\(y^2+xy+y=x^3+2486x+90586\) |
152.2.0.? |
$[ ]$ |
| 351310.n1 |
351310n1 |
351310.n |
351310n |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19 \cdot 43^{2} \) |
\( - 2 \cdot 5^{2} \cdot 19 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$9.921896190$ |
$1$ |
|
$0$ |
$638400$ |
$1.135635$ |
$357911/950$ |
$0.81125$ |
$2.86876$ |
$[1, 0, 0, 2735, -104033]$ |
\(y^2+xy=x^3+2735x-104033\) |
152.2.0.? |
$[(1353321/128, 1651808011/128)]$ |
| 372400.hm1 |
372400hm1 |
372400.hm |
372400hm |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{13} \cdot 5^{8} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.665725113$ |
$1$ |
|
$2$ |
$1741824$ |
$1.725857$ |
$357911/950$ |
$0.81125$ |
$3.40786$ |
$[0, 1, 0, 28992, 3607988]$ |
\(y^2=x^3+x^2+28992x+3607988\) |
152.2.0.? |
$[(178, 3800)]$ |
| 418950.dx1 |
418950dx1 |
418950.dx |
418950dx |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2 \cdot 3^{6} \cdot 5^{8} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2177280$ |
$1.582016$ |
$357911/950$ |
$0.81125$ |
$3.24352$ |
$[1, -1, 0, 16308, 1513966]$ |
\(y^2+xy=x^3-x^2+16308x+1513966\) |
152.2.0.? |
$[ ]$ |