Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
21675.g1 |
21675e1 |
21675.g |
21675e |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 5^{2} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$11.00977328$ |
$1$ |
|
$0$ |
$231336$ |
$2.143482$ |
$35242105/19683$ |
$1.04604$ |
$4.90076$ |
$[1, 1, 1, -252303, 9007266]$ |
\(y^2+xy+y=x^3+x^2-252303x+9007266\) |
12.2.0.a.1 |
$[(-42104/9, 35065/9)]$ |
21675.i1 |
21675t1 |
21675.i |
21675t |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 5^{2} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$0.149598959$ |
$1$ |
|
$6$ |
$13608$ |
$0.726875$ |
$35242105/19683$ |
$1.04604$ |
$3.19809$ |
$[1, 0, 0, -873, 1782]$ |
\(y^2+xy=x^3-873x+1782\) |
12.2.0.a.1 |
$[(-27, 90)]$ |
21675.r1 |
21675m1 |
21675.r |
21675m |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 5^{8} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$2.842496869$ |
$1$ |
|
$2$ |
$68040$ |
$1.531595$ |
$35242105/19683$ |
$1.04604$ |
$4.16531$ |
$[1, 1, 0, -21825, 222750]$ |
\(y^2+xy=x^3+x^2-21825x+222750\) |
12.2.0.a.1 |
$[(10, 70)]$ |
21675.u1 |
21675w1 |
21675.u |
21675w |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 5^{8} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$8.643711099$ |
$1$ |
|
$0$ |
$1156680$ |
$2.948200$ |
$35242105/19683$ |
$1.04604$ |
$5.86798$ |
$[1, 0, 1, -6307576, 1138523423]$ |
\(y^2+xy+y=x^3-6307576x+1138523423\) |
12.2.0.a.1 |
$[(-1319/5, 4797706/5)]$ |
65025.k1 |
65025cl1 |
65025.k |
65025cl |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{15} \cdot 5^{8} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$544320$ |
$2.080902$ |
$35242105/19683$ |
$1.04604$ |
$4.34718$ |
$[1, -1, 1, -196430, -6210678]$ |
\(y^2+xy+y=x^3-x^2-196430x-6210678\) |
12.2.0.a.1 |
$[ ]$ |
65025.r1 |
65025cf1 |
65025.r |
65025cf |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{15} \cdot 5^{8} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$5.134822966$ |
$1$ |
|
$0$ |
$9253440$ |
$3.497509$ |
$35242105/19683$ |
$1.04604$ |
$5.88107$ |
$[1, -1, 1, -56768180, -30740132428]$ |
\(y^2+xy+y=x^3-x^2-56768180x-30740132428\) |
12.2.0.a.1 |
$[(37851/2, 4190345/2)]$ |
65025.bv1 |
65025bl1 |
65025.bv |
65025bl |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{15} \cdot 5^{2} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1850688$ |
$2.692787$ |
$35242105/19683$ |
$1.04604$ |
$5.00973$ |
$[1, -1, 0, -2270727, -245466914]$ |
\(y^2+xy=x^3-x^2-2270727x-245466914\) |
12.2.0.a.1 |
$[ ]$ |
65025.cc1 |
65025bz1 |
65025.cc |
65025bz |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{15} \cdot 5^{2} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$4.089760630$ |
$1$ |
|
$0$ |
$108864$ |
$1.276182$ |
$35242105/19683$ |
$1.04604$ |
$3.47585$ |
$[1, -1, 0, -7857, -48114]$ |
\(y^2+xy=x^3-x^2-7857x-48114\) |
12.2.0.a.1 |
$[(1485/4, 5049/4)]$ |
346800.bj1 |
346800bj1 |
346800.bj |
346800bj |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{9} \cdot 5^{8} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$40.66457380$ |
$1$ |
|
$0$ |
$74027520$ |
$3.641350$ |
$35242105/19683$ |
$1.04604$ |
$5.24463$ |
$[0, -1, 0, -100921208, -72865499088]$ |
\(y^2=x^3-x^2-100921208x-72865499088\) |
12.2.0.a.1 |
$[(-343994827689331062/8963389, 381558717934862079439996854/8963389)]$ |
346800.bu1 |
346800bu1 |
346800.bu |
346800bu |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{9} \cdot 5^{2} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$2.349421200$ |
$1$ |
|
$2$ |
$870912$ |
$1.420023$ |
$35242105/19683$ |
$1.04604$ |
$3.15504$ |
$[0, -1, 0, -13968, -114048]$ |
\(y^2=x^3-x^2-13968x-114048\) |
12.2.0.a.1 |
$[(-62, 714)]$ |
346800.kc1 |
346800kc1 |
346800.kc |
346800kc |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{9} \cdot 5^{2} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$5.222106662$ |
$1$ |
|
$2$ |
$14805504$ |
$2.836628$ |
$35242105/19683$ |
$1.04604$ |
$4.48763$ |
$[0, 1, 0, -4036848, -584538732]$ |
\(y^2=x^3+x^2-4036848x-584538732\) |
12.2.0.a.1 |
$[(-276, 22554)]$ |
346800.kk1 |
346800kk1 |
346800.kk |
346800kk |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{9} \cdot 5^{8} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1.127160470$ |
$1$ |
|
$4$ |
$4354560$ |
$2.224743$ |
$35242105/19683$ |
$1.04604$ |
$3.91203$ |
$[0, 1, 0, -349208, -14954412]$ |
\(y^2=x^3+x^2-349208x-14954412\) |
12.2.0.a.1 |
$[(-92, 4050)]$ |