Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
3213.k2 |
3213r2 |
3213.k |
3213r |
$3$ |
$9$ |
\( 3^{3} \cdot 7 \cdot 17 \) |
\( 3^{9} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.4 |
3Cs.1.1 |
$2142$ |
$144$ |
$3$ |
$2.175621484$ |
$1$ |
|
$6$ |
$14904$ |
$1.828938$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.92844$ |
$[0, 0, 1, -177390, 28599392]$ |
\(y^2+y=x^3-177390x+28599392\) |
3.24.0-3.a.1.1, 9.72.0-9.c.1.1, 714.48.1.?, 2142.144.3.? |
$[(174, 1732)]$ |
3213.l3 |
3213u1 |
3213.l |
3213u |
$3$ |
$9$ |
\( 3^{3} \cdot 7 \cdot 17 \) |
\( 3^{3} \cdot 7^{9} \cdot 17^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.4 |
3Cs.1.1 |
$2142$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$2$ |
$4968$ |
$1.279631$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.11213$ |
$[0, 0, 1, -19710, -1059237]$ |
\(y^2+y=x^3-19710x-1059237\) |
3.24.0-3.a.1.1, 9.72.0-9.c.1.1, 714.48.1.?, 2142.144.3.? |
$[ ]$ |
22491.u3 |
22491a1 |
22491.u |
22491a |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 7^{15} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$2142$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$238464$ |
$2.252586$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.28454$ |
$[0, 0, 1, -965790, 363318205]$ |
\(y^2+y=x^3-965790x+363318205\) |
3.12.0.a.1, 9.36.0.c.1, 21.24.0-3.a.1.1, 63.72.0-9.c.1.1, 102.24.0.?, $\ldots$ |
$[ ]$ |
22491.v2 |
22491j2 |
22491.v |
22491j |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 7^{15} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$2142$ |
$144$ |
$3$ |
$4.126159135$ |
$1$ |
|
$0$ |
$715392$ |
$2.801891$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.94234$ |
$[0, 0, 1, -8692110, -9809591542]$ |
\(y^2+y=x^3-8692110x-9809591542\) |
3.12.0.a.1, 9.36.0.c.1, 21.24.0-3.a.1.1, 63.72.0-9.c.1.1, 102.24.0.?, $\ldots$ |
$[(-362054/15, 10998494/15)]$ |
51408.bo2 |
51408t2 |
51408.bo |
51408t |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \cdot 17 \) |
\( 2^{12} \cdot 3^{9} \cdot 7^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$4284$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1073088$ |
$2.522083$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.17994$ |
$[0, 0, 0, -2838240, -1830361104]$ |
\(y^2=x^3-2838240x-1830361104\) |
3.12.0.a.1, 9.36.0.c.1, 12.24.0-3.a.1.1, 36.72.0-9.c.1.1, 714.24.1.?, $\ldots$ |
$[ ]$ |
51408.br3 |
51408bc1 |
51408.br |
51408bc |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \cdot 17 \) |
\( 2^{12} \cdot 3^{3} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$4284$ |
$144$ |
$3$ |
$4.747685667$ |
$1$ |
|
$2$ |
$357696$ |
$1.972778$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$4.57228$ |
$[0, 0, 0, -315360, 67791152]$ |
\(y^2=x^3-315360x+67791152\) |
3.12.0.a.1, 9.36.0.c.1, 12.24.0-3.a.1.1, 36.72.0-9.c.1.1, 714.24.1.?, $\ldots$ |
$[(-343, 11645)]$ |
54621.u2 |
54621b2 |
54621.u |
54621b |
$3$ |
$9$ |
\( 3^{3} \cdot 7 \cdot 17^{2} \) |
\( 3^{9} \cdot 7^{9} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$2142$ |
$144$ |
$3$ |
$16.90221746$ |
$1$ |
|
$0$ |
$4292352$ |
$3.245544$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.94703$ |
$[0, 0, 1, -51265710, 140508814124]$ |
\(y^2+y=x^3-51265710x+140508814124\) |
3.12.0.a.1, 9.36.0.c.1, 42.24.0-3.a.1.1, 51.24.0-3.a.1.1, 126.72.0.?, $\ldots$ |
$[(34208881/94, 6509167491/94)]$ |
54621.v3 |
54621a1 |
54621.v |
54621a |
$3$ |
$9$ |
\( 3^{3} \cdot 7 \cdot 17^{2} \) |
\( 3^{3} \cdot 7^{9} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$2142$ |
$144$ |
$3$ |
$10.08933015$ |
$1$ |
|
$0$ |
$1430784$ |
$2.696236$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.34274$ |
$[0, 0, 1, -5696190, -5204030153]$ |
\(y^2+y=x^3-5696190x-5204030153\) |
3.12.0.a.1, 9.36.0.c.1, 42.24.0-3.a.1.1, 51.24.0-3.a.1.1, 126.72.0.?, $\ldots$ |
$[(2348873/28, 1492494555/28)]$ |
80325.bt3 |
80325a1 |
80325.bt |
80325a |
$3$ |
$9$ |
\( 3^{3} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( 3^{3} \cdot 5^{6} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$10710$ |
$144$ |
$3$ |
$16.10063390$ |
$1$ |
|
$0$ |
$715392$ |
$2.084351$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$4.51015$ |
$[0, 0, 1, -492750, -132404594]$ |
\(y^2+y=x^3-492750x-132404594\) |
3.12.0.a.1, 9.36.0.c.1, 15.24.0-3.a.1.1, 45.72.0-9.c.1.1, 714.24.1.?, $\ldots$ |
$[(-77512090/451, 16209323787/451)]$ |
80325.bu2 |
80325k2 |
80325.bu |
80325k |
$3$ |
$9$ |
\( 3^{3} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( 3^{9} \cdot 5^{6} \cdot 7^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$10710$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2146176$ |
$2.633656$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.09380$ |
$[0, 0, 1, -4434750, 3574924031]$ |
\(y^2+y=x^3-4434750x+3574924031\) |
3.12.0.a.1, 9.36.0.c.1, 15.24.0-3.a.1.1, 45.72.0-9.c.1.1, 714.24.1.?, $\ldots$ |
$[ ]$ |
205632.dv2 |
205632bb2 |
205632.dv |
205632bb |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 7 \cdot 17 \) |
\( 2^{6} \cdot 3^{9} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$8568$ |
$144$ |
$3$ |
$14.60215317$ |
$1$ |
|
$0$ |
$2146176$ |
$2.175510$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$4.25302$ |
$[0, 0, 0, -709560, -228795138]$ |
\(y^2=x^3-709560x-228795138\) |
3.12.0.a.1, 9.36.0.c.1, 24.24.0-3.a.1.2, 72.72.0.?, 714.24.1.?, $\ldots$ |
$[(-15030141/181, 2468656431/181)]$ |
205632.dy3 |
205632ba1 |
205632.dy |
205632ba |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 7 \cdot 17 \) |
\( 2^{6} \cdot 3^{3} \cdot 7^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$8568$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$715392$ |
$1.626204$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$3.71422$ |
$[0, 0, 0, -78840, 8473894]$ |
\(y^2=x^3-78840x+8473894\) |
3.12.0.a.1, 9.36.0.c.1, 24.24.0-3.a.1.2, 72.72.0.?, 714.24.1.?, $\ldots$ |
$[ ]$ |
205632.ee2 |
205632ha2 |
205632.ee |
205632ha |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 7 \cdot 17 \) |
\( 2^{6} \cdot 3^{9} \cdot 7^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$8568$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2146176$ |
$2.175510$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$4.25302$ |
$[0, 0, 0, -709560, 228795138]$ |
\(y^2=x^3-709560x+228795138\) |
3.12.0.a.1, 9.36.0.c.1, 24.24.0-3.a.1.1, 72.72.0.?, 714.24.1.?, $\ldots$ |
$[ ]$ |
205632.ef3 |
205632gx1 |
205632.ef |
205632gx |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 7 \cdot 17 \) |
\( 2^{6} \cdot 3^{3} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$8568$ |
$144$ |
$3$ |
$0.997244423$ |
$1$ |
|
$0$ |
$715392$ |
$1.626204$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$3.71422$ |
$[0, 0, 0, -78840, -8473894]$ |
\(y^2=x^3-78840x-8473894\) |
3.12.0.a.1, 9.36.0.c.1, 24.24.0-3.a.1.1, 72.72.0.?, 714.24.1.?, $\ldots$ |
$[(-1457/3, 5831/3)]$ |
359856.dx3 |
359856dx1 |
359856.dx |
359856dx |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{3} \cdot 7^{15} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$4284$ |
$144$ |
$3$ |
$1$ |
$25$ |
$5$ |
$0$ |
$17169408$ |
$2.945732$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$4.78944$ |
$[0, 0, 0, -15452640, -23252365136]$ |
\(y^2=x^3-15452640x-23252365136\) |
3.12.0.a.1, 9.36.0.c.1, 84.24.0.?, 204.24.0.?, 252.72.0.?, $\ldots$ |
$[ ]$ |
359856.dy2 |
359856dy2 |
359856.dy |
359856dy |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{9} \cdot 7^{15} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$4284$ |
$144$ |
$3$ |
$5.355816903$ |
$1$ |
|
$2$ |
$51508224$ |
$3.495041$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.30468$ |
$[0, 0, 0, -139073760, 627813858672]$ |
\(y^2=x^3-139073760x+627813858672\) |
3.12.0.a.1, 9.36.0.c.1, 84.24.0.?, 204.24.0.?, 252.72.0.?, $\ldots$ |
$[(889, 710549)]$ |
382347.bx2 |
382347bx2 |
382347.bx |
382347bx |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 7^{15} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$2142$ |
$144$ |
$3$ |
$12.38317245$ |
$1$ |
|
$0$ |
$206032896$ |
$4.218498$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.95505$ |
$[0, 0, 1, -2512019790, -48194523244618]$ |
\(y^2+y=x^3-2512019790x-48194523244618\) |
3.12.0.a.1, 6.24.0-3.a.1.1, 9.36.0.c.1, 18.72.0-9.c.1.1, 357.24.0.?, $\ldots$ |
$[(119246772/31, 1173137063899/31)]$ |
382347.by3 |
382347by1 |
382347.by |
382347by |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17^{2} \) |
\( 3^{3} \cdot 7^{15} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$2142$ |
$144$ |
$3$ |
$22.60022490$ |
$1$ |
|
$0$ |
$68677632$ |
$3.669193$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.44224$ |
$[0, 0, 1, -279113310, 1784982342393]$ |
\(y^2+y=x^3-279113310x+1784982342393\) |
3.12.0.a.1, 6.24.0-3.a.1.1, 9.36.0.c.1, 18.72.0-9.c.1.1, 357.24.0.?, $\ldots$ |
$[(-2055432099/1717, 7121317511229344/1717)]$ |
388773.ba3 |
388773ba1 |
388773.ba |
388773ba |
$3$ |
$9$ |
\( 3^{3} \cdot 7 \cdot 11^{2} \cdot 17 \) |
\( 3^{3} \cdot 7^{9} \cdot 11^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$23562$ |
$144$ |
$3$ |
$5.433487723$ |
$1$ |
|
$0$ |
$7153920$ |
$2.478577$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$4.32513$ |
$[0, 0, 1, -2384910, 1409844114]$ |
\(y^2+y=x^3-2384910x+1409844114\) |
3.12.0.a.1, 9.36.0.c.1, 33.24.0-3.a.1.1, 99.72.0.?, 714.24.1.?, $\ldots$ |
$[(3993/2, 39079/2)]$ |
388773.bb2 |
388773bb2 |
388773.bb |
388773bb |
$3$ |
$9$ |
\( 3^{3} \cdot 7 \cdot 11^{2} \cdot 17 \) |
\( 3^{9} \cdot 7^{9} \cdot 11^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$23562$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$21461760$ |
$3.027885$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$4.83727$ |
$[0, 0, 1, -21464190, -38065791085]$ |
\(y^2+y=x^3-21464190x-38065791085\) |
3.12.0.a.1, 9.36.0.c.1, 33.24.0-3.a.1.1, 99.72.0.?, 714.24.1.?, $\ldots$ |
$[ ]$ |