| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 2040.a1 |
2040b1 |
2040.a |
2040b |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$4.800645317$ |
$1$ |
|
$2$ |
$8736$ |
$1.532228$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.46319$ |
$[0, -1, 0, 7644, -1273275]$ |
\(y^2=x^3-x^2+7644x-1273275\) |
510.2.0.? |
$[(86, 113)]$ |
| 4080.w1 |
4080m1 |
4080.w |
4080m |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17472$ |
$1.532228$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.00771$ |
$[0, 1, 0, 7644, 1273275]$ |
\(y^2=x^3+x^2+7644x+1273275\) |
510.2.0.? |
$[ ]$ |
| 6120.q1 |
6120y1 |
6120.q |
6120y |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{13} \cdot 5^{13} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.171220304$ |
$1$ |
|
$8$ |
$69888$ |
$2.081535$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.53083$ |
$[0, 0, 0, 68793, 34309631]$ |
\(y^2=x^3+68793x+34309631\) |
510.2.0.? |
$[(37, 6075)]$ |
| 10200.bp1 |
10200bj1 |
10200.bp |
10200bj |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{19} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$209664$ |
$2.336948$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.55679$ |
$[0, 1, 0, 191092, -158777187]$ |
\(y^2=x^3+x^2+191092x-158777187\) |
510.2.0.? |
$[ ]$ |
| 12240.cc1 |
12240x1 |
12240.cc |
12240x |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{13} \cdot 5^{13} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$139776$ |
$2.081535$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.12353$ |
$[0, 0, 0, 68793, -34309631]$ |
\(y^2=x^3+68793x-34309631\) |
510.2.0.? |
$[ ]$ |
| 16320.bl1 |
16320cd1 |
16320.bl |
16320cd |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{13} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.446053099$ |
$1$ |
|
$2$ |
$139776$ |
$1.878803$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.72078$ |
$[0, -1, 0, 30575, 10155625]$ |
\(y^2=x^3-x^2+30575x+10155625\) |
510.2.0.? |
$[(600, 15625)]$ |
| 16320.cm1 |
16320bk1 |
16320.cm |
16320bk |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{13} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.339649893$ |
$1$ |
|
$4$ |
$139776$ |
$1.878803$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.72078$ |
$[0, 1, 0, 30575, -10155625]$ |
\(y^2=x^3+x^2+30575x-10155625\) |
510.2.0.? |
$[(650, 16875)]$ |
| 20400.h1 |
20400i1 |
20400.h |
20400i |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{19} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$419328$ |
$2.336948$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.16865$ |
$[0, -1, 0, 191092, 158777187]$ |
\(y^2=x^3-x^2+191092x+158777187\) |
510.2.0.? |
$[ ]$ |
| 30600.ch1 |
30600r1 |
30600.ch |
30600r |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{13} \cdot 5^{19} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1677312$ |
$2.886253$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.60393$ |
$[0, 0, 0, 1719825, 4288703875]$ |
\(y^2=x^3+1719825x+4288703875\) |
510.2.0.? |
$[ ]$ |
| 34680.bx1 |
34680z1 |
34680.bx |
34680z |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.385278489$ |
$1$ |
|
$6$ |
$2515968$ |
$2.948837$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.60867$ |
$[0, 1, 0, 2209020, -6242345775]$ |
\(y^2=x^3+x^2+2209020x-6242345775\) |
510.2.0.? |
$[(2340, 108375)]$ |
| 48960.n1 |
48960ch1 |
48960.n |
48960ch |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{13} \cdot 5^{13} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$15.24356255$ |
$1$ |
|
$0$ |
$1118208$ |
$2.428108$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.85092$ |
$[0, 0, 0, 275172, 274477048]$ |
\(y^2=x^3+275172x+274477048\) |
510.2.0.? |
$[(12490949/7, 44146276173/7)]$ |
| 48960.cs1 |
48960ez1 |
48960.cs |
48960ez |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{13} \cdot 5^{13} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1118208$ |
$2.428108$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.85092$ |
$[0, 0, 0, 275172, -274477048]$ |
\(y^2=x^3+275172x-274477048\) |
510.2.0.? |
$[ ]$ |
| 61200.bj1 |
61200bn1 |
61200.bj |
61200bn |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{13} \cdot 5^{19} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3354624$ |
$2.886253$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.25151$ |
$[0, 0, 0, 1719825, -4288703875]$ |
\(y^2=x^3+1719825x-4288703875\) |
510.2.0.? |
$[ ]$ |
| 69360.bh1 |
69360t1 |
69360.bh |
69360t |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5031936$ |
$2.948837$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.25992$ |
$[0, -1, 0, 2209020, 6242345775]$ |
\(y^2=x^3-x^2+2209020x+6242345775\) |
510.2.0.? |
$[ ]$ |
| 81600.eh1 |
81600bg1 |
81600.eh |
81600bg |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{19} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$3354624$ |
$2.683521$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.90282$ |
$[0, -1, 0, 764367, -1270981863]$ |
\(y^2=x^3-x^2+764367x-1270981863\) |
510.2.0.? |
$[ ]$ |
| 81600.fx1 |
81600iy1 |
81600.fx |
81600iy |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{19} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3354624$ |
$2.683521$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.90282$ |
$[0, 1, 0, 764367, 1270981863]$ |
\(y^2=x^3+x^2+764367x+1270981863\) |
510.2.0.? |
$[ ]$ |
| 99960.dp1 |
99960bv1 |
99960.dp |
99960bv |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.373237707$ |
$1$ |
|
$6$ |
$2882880$ |
$2.505184$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.63050$ |
$[0, 1, 0, 374540, 435984233]$ |
\(y^2=x^3+x^2+374540x+435984233\) |
510.2.0.? |
$[(536, 28125)]$ |
| 104040.bf1 |
104040cg1 |
104040.bf |
104040cg |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{13} \cdot 5^{13} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$9.262229805$ |
$1$ |
|
$2$ |
$20127744$ |
$3.498142$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.64589$ |
$[0, 0, 0, 19881177, 168563217103]$ |
\(y^2=x^3+19881177x+168563217103\) |
510.2.0.? |
$[(510561, 364828109)]$ |
| 173400.h1 |
173400bw1 |
173400.h |
173400bw |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{19} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$60383232$ |
$3.753555$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.66088$ |
$[0, -1, 0, 55225492, -780403672863]$ |
\(y^2=x^3-x^2+55225492x-780403672863\) |
510.2.0.? |
$[ ]$ |
| 199920.cp1 |
199920go1 |
199920.cp |
199920go |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 7^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5765760$ |
$2.505184$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.36754$ |
$[0, -1, 0, 374540, -435984233]$ |
\(y^2=x^3-x^2+374540x-435984233\) |
510.2.0.? |
$[ ]$ |
| 208080.q1 |
208080fv1 |
208080.q |
208080fv |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{13} \cdot 5^{13} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$40255488$ |
$3.498142$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.32631$ |
$[0, 0, 0, 19881177, -168563217103]$ |
\(y^2=x^3+19881177x-168563217103\) |
510.2.0.? |
$[ ]$ |
| 244800.co1 |
244800co1 |
244800.co |
244800co |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{13} \cdot 5^{19} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$29.67230126$ |
$1$ |
|
$0$ |
$26836992$ |
$3.232826$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.99996$ |
$[0, 0, 0, 6879300, -34309631000]$ |
\(y^2=x^3+6879300x-34309631000\) |
510.2.0.? |
$[(107865002747885/61457, 1124157882700683131625/61457)]$ |
| 244800.qv1 |
244800qv1 |
244800.qv |
244800qv |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{13} \cdot 5^{19} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$26836992$ |
$3.232826$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.99996$ |
$[0, 0, 0, 6879300, 34309631000]$ |
\(y^2=x^3+6879300x+34309631000\) |
510.2.0.? |
$[ ]$ |
| 246840.q1 |
246840q1 |
246840.q |
246840q |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 11^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$11793600$ |
$2.731178$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.51180$ |
$[0, -1, 0, 924884, 1691029441]$ |
\(y^2=x^3-x^2+924884x+1691029441\) |
510.2.0.? |
$[ ]$ |
| 277440.ca1 |
277440ca1 |
277440.ca |
277440ca |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{13} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$85.94027374$ |
$1$ |
|
$0$ |
$40255488$ |
$3.295410$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.00995$ |
$[0, -1, 0, 8836079, -49947602279]$ |
\(y^2=x^3-x^2+8836079x-49947602279\) |
510.2.0.? |
$[(193445349029494529664688947034239443688/239138088569710429, 1866953576909082956115413293831147153216340275374363399389/239138088569710429)]$ |
| 277440.fe1 |
277440fe1 |
277440.fe |
277440fe |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{13} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$5.090785758$ |
$1$ |
|
$2$ |
$40255488$ |
$3.295410$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.00995$ |
$[0, 1, 0, 8836079, 49947602279]$ |
\(y^2=x^3+x^2+8836079x+49947602279\) |
510.2.0.? |
$[(3122, 328593)]$ |
| 299880.p1 |
299880p1 |
299880.p |
299880p |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{13} \cdot 5^{13} \cdot 7^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$23063040$ |
$3.054489$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.74981$ |
$[0, 0, 0, 3370857, -11768203433]$ |
\(y^2=x^3+3370857x-11768203433\) |
510.2.0.? |
$[ ]$ |
| 344760.bg1 |
344760bg1 |
344760.bg |
344760bg |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$2.087075587$ |
$1$ |
|
$2$ |
$18869760$ |
$2.814705$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.47218$ |
$[0, -1, 0, 1291780, -2792217975]$ |
\(y^2=x^3-x^2+1291780x-2792217975\) |
510.2.0.? |
$[(1140, 12675)]$ |
| 346800.kw1 |
346800kw1 |
346800.kw |
346800kw |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{19} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$120766464$ |
$3.753555$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.35329$ |
$[0, 1, 0, 55225492, 780403672863]$ |
\(y^2=x^3+x^2+55225492x+780403672863\) |
510.2.0.? |
$[ ]$ |
| 493680.dy1 |
493680dy1 |
493680.dy |
493680dy |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 11^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$23587200$ |
$2.731178$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.27325$ |
$[0, 1, 0, 924884, -1691029441]$ |
\(y^2=x^3+x^2+924884x-1691029441\) |
510.2.0.? |
$[ ]$ |
| 499800.dq1 |
499800dq1 |
499800.dq |
499800dq |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{19} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$15.43580395$ |
$1$ |
|
$0$ |
$69189120$ |
$3.309902$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$4.79848$ |
$[0, -1, 0, 9363492, 54479302137]$ |
\(y^2=x^3-x^2+9363492x+54479302137\) |
510.2.0.? |
$[(6671510972/61, 544925109765625/61)]$ |