Learn more

Refine search


Results (1-50 of 84 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
57.c2 57.c \( 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -7, 5]$ \(y^2+xy+y=x^3-7x+5\)
171.a2 171.a \( 3^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -59, -142]$ \(y^2+xy+y=x^3-x^2-59x-142\)
912.b2 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.300946956$ $[0, -1, 0, -104, -336]$ \(y^2=x^3-x^2-104x-336\)
1083.a2 1083.a \( 3 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -2354, -40714]$ \(y^2+xy+y=x^3+x^2-2354x-40714\)
1425.a2 1425.a \( 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.781842584$ $[1, 1, 1, -163, 656]$ \(y^2+xy+y=x^3+x^2-163x+656\)
2736.s2 2736.s \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -939, 10010]$ \(y^2=x^3-939x+10010\)
2793.i2 2793.i \( 3 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.275125787$ $[1, 1, 0, -319, -2120]$ \(y^2+xy=x^3+x^2-319x-2120\)
3249.g2 3249.g \( 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.785547844$ $[1, -1, 0, -21186, 1078087]$ \(y^2+xy=x^3-x^2-21186x+1078087\)
3648.o2 3648.o \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -417, 3105]$ \(y^2=x^3-x^2-417x+3105\)
3648.bf2 3648.bf \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.212750122$ $[0, 1, 0, -417, -3105]$ \(y^2=x^3+x^2-417x-3105\)
4275.m2 4275.m \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -1467, -19184]$ \(y^2+xy=x^3-x^2-1467x-19184\)
6897.a2 6897.a \( 3 \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -789, -7776]$ \(y^2+xy=x^3-789x-7776\)
8379.e2 8379.e \( 3^{2} \cdot 7^{2} \cdot 19 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.841944016$ $[1, -1, 1, -2876, 54366]$ \(y^2+xy+y=x^3-x^2-2876x+54366\)
9633.h2 9633.h \( 3 \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.186858900$ $[1, 0, 0, -1102, 12635]$ \(y^2+xy=x^3-1102x+12635\)
10944.n2 10944.n \( 2^{6} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.107890646$ $[0, 0, 0, -3756, 80080]$ \(y^2=x^3-3756x+80080\)
10944.o2 10944.o \( 2^{6} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.044327614$ $[0, 0, 0, -3756, -80080]$ \(y^2=x^3-3756x-80080\)
16473.e2 16473.e \( 3 \cdot 17^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.539546961$ $[1, 1, 0, -1884, 27675]$ \(y^2+xy=x^3+x^2-1884x+27675\)
17328.u2 17328.u \( 2^{4} \cdot 3 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -37664, 2530356]$ \(y^2=x^3+x^2-37664x+2530356\)
20691.p2 20691.p \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -7101, 209952]$ \(y^2+xy=x^3-x^2-7101x+209952\)
22800.cw2 22800.cw \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -2608, -47212]$ \(y^2=x^3+x^2-2608x-47212\)
27075.s2 27075.s \( 3 \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $13.53685764$ $[1, 0, 1, -58851, -4971527]$ \(y^2+xy+y=x^3-58851x-4971527\)
28899.m2 28899.m \( 3^{2} \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.342809403$ $[1, -1, 0, -9918, -341145]$ \(y^2+xy=x^3-x^2-9918x-341145\)
30153.g2 30153.g \( 3 \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -3450, -70769]$ \(y^2+xy+y=x^3-3450x-70769\)
44688.di2 44688.di \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -5112, 125460]$ \(y^2=x^3+x^2-5112x+125460\)
47937.b2 47937.b \( 3 \cdot 19 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -5484, 138996]$ \(y^2+xy+y=x^3+x^2-5484x+138996\)
49419.d2 49419.d \( 3^{2} \cdot 17^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -16961, -764184]$ \(y^2+xy+y=x^3-x^2-16961x-764184\)
51984.ci2 51984.ci \( 2^{4} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -338979, -68658590]$ \(y^2=x^3-338979x-68658590\)
53067.j2 53067.j \( 3 \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -115347, 13618800]$ \(y^2+xy=x^3-115347x+13618800\)
54777.c2 54777.c \( 3 \cdot 19 \cdot 31^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -6266, -175185]$ \(y^2+xy=x^3+x^2-6266x-175185\)
68400.dj2 68400.dj \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.301853412$ $[0, 0, 0, -23475, 1251250]$ \(y^2=x^3-23475x+1251250\)
69312.bp2 69312.bp \( 2^{6} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $9.104361385$ $[0, -1, 0, -150657, 20393505]$ \(y^2=x^3-x^2-150657x+20393505\)
69312.dn2 69312.dn \( 2^{6} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $20.28489791$ $[0, 1, 0, -150657, -20393505]$ \(y^2=x^3+x^2-150657x-20393505\)
69825.q2 69825.q \( 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -7988, -249033]$ \(y^2+xy=x^3-7988x-249033\)
78033.a2 78033.a \( 3 \cdot 19 \cdot 37^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.510417240$ $[1, 0, 0, -8927, 292680]$ \(y^2+xy=x^3-8927x+292680\)
81225.k2 81225.k \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.820430677$ $[1, -1, 1, -529655, 134231222]$ \(y^2+xy+y=x^3-x^2-529655x+134231222\)
90459.f2 90459.f \( 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -31046, 1910756]$ \(y^2+xy+y=x^3-x^2-31046x+1910756\)
91200.cp2 91200.cp \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -10433, -367263]$ \(y^2=x^3-x^2-10433x-367263\)
91200.ha2 91200.ha \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.512409554$ $[0, 1, 0, -10433, 367263]$ \(y^2=x^3+x^2-10433x+367263\)
95817.i2 95817.i \( 3 \cdot 19 \cdot 41^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -10961, 394680]$ \(y^2+xy=x^3+x^2-10961x+394680\)
105393.d2 105393.d \( 3 \cdot 19 \cdot 43^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $9.816090003$ $[1, 1, 1, -12057, -465594]$ \(y^2+xy+y=x^3+x^2-12057x-465594\)
110352.j2 110352.j \( 2^{4} \cdot 3 \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.156114656$ $[0, -1, 0, -12624, 497664]$ \(y^2=x^3-x^2-12624x+497664\)
125913.h2 125913.h \( 3 \cdot 19 \cdot 47^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -14405, -602629]$ \(y^2+xy+y=x^3-14405x-602629\)
131043.w2 131043.w \( 3 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $11.25988427$ $[1, 1, 0, -284836, 52765915]$ \(y^2+xy=x^3+x^2-284836x+52765915\)
134064.bm2 134064.bm \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $3.944542647$ $[0, 0, 0, -46011, -3433430]$ \(y^2=x^3-46011x-3433430\)
143811.p2 143811.p \( 3^{2} \cdot 19 \cdot 29^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $15.44586400$ $[1, -1, 0, -49356, -3802253]$ \(y^2+xy=x^3-x^2-49356x-3802253\)
154128.bk2 154128.bk \( 2^{4} \cdot 3 \cdot 13^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -17632, -808640]$ \(y^2=x^3-x^2-17632x-808640\)
159201.bi2 159201.bi \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -1038123, -367707600]$ \(y^2+xy=x^3-x^2-1038123x-367707600\)
160113.d2 160113.d \( 3 \cdot 19 \cdot 53^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -18317, 854786]$ \(y^2+xy+y=x^3+x^2-18317x+854786\)
164331.a2 164331.a \( 3^{2} \cdot 19 \cdot 31^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.501467586$ $[1, -1, 1, -56399, 4673598]$ \(y^2+xy+y=x^3-x^2-56399x+4673598\)
172425.ca2 172425.ca \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.219124369$ $[1, 1, 0, -19725, -972000]$ \(y^2+xy=x^3+x^2-19725x-972000\)
Next   Download to