| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 7866.h2 |
7866d1 |
7866.h |
7866d |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{6} \cdot 3^{9} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$3.596095980$ |
$1$ |
|
$3$ |
$2880$ |
$0.364343$ |
$29503629/27968$ |
$0.79391$ |
$3.01969$ |
$[1, -1, 0, 174, -748]$ |
\(y^2+xy=x^3-x^2+174x-748\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(29, 153)]$ |
| 7866.n2 |
7866p1 |
7866.n |
7866p |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{6} \cdot 3^{3} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$0.972690634$ |
$1$ |
|
$7$ |
$960$ |
$-0.184963$ |
$29503629/27968$ |
$0.79391$ |
$2.28486$ |
$[1, -1, 1, 19, 21]$ |
\(y^2+xy+y=x^3-x^2+19x+21\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(3, 8)]$ |
| 62928.i2 |
62928o1 |
62928.i |
62928o |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{18} \cdot 3^{3} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$3.009843955$ |
$1$ |
|
$5$ |
$23040$ |
$0.508183$ |
$29503629/27968$ |
$0.79391$ |
$2.60763$ |
$[0, 0, 0, 309, -1670]$ |
\(y^2=x^3+309x-1670\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(6, 20)]$ |
| 62928.bi2 |
62928n1 |
62928.bi |
62928n |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{18} \cdot 3^{9} \cdot 19 \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$69120$ |
$1.057489$ |
$29503629/27968$ |
$0.79391$ |
$3.20417$ |
$[0, 0, 0, 2781, 45090]$ |
\(y^2=x^3+2781x+45090\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[ ]$ |
| 149454.i2 |
149454co1 |
149454.i |
149454co |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{6} \cdot 3^{3} \cdot 19^{7} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$345600$ |
$1.287256$ |
$29503629/27968$ |
$0.79391$ |
$3.20296$ |
$[1, -1, 0, 6972, -180720]$ |
\(y^2+xy=x^3-x^2+6972x-180720\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[ ]$ |
| 149454.ck2 |
149454bj1 |
149454.ck |
149454bj |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{6} \cdot 3^{9} \cdot 19^{7} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1036800$ |
$1.836563$ |
$29503629/27968$ |
$0.79391$ |
$3.75620$ |
$[1, -1, 1, 62746, 4816693]$ |
\(y^2+xy+y=x^3-x^2+62746x+4816693\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[ ]$ |
| 180918.h2 |
180918ca1 |
180918.h |
180918ca |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) |
\( - 2^{6} \cdot 3^{9} \cdot 19 \cdot 23^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1520640$ |
$1.932091$ |
$29503629/27968$ |
$0.79391$ |
$3.79161$ |
$[1, -1, 0, 91947, 8549045]$ |
\(y^2+xy=x^3-x^2+91947x+8549045\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[ ]$ |
| 180918.bx2 |
180918be1 |
180918.bx |
180918be |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 19 \cdot 23^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$7.433682924$ |
$1$ |
|
$1$ |
$506880$ |
$1.382784$ |
$29503629/27968$ |
$0.79391$ |
$3.24711$ |
$[1, -1, 1, 10216, -320037]$ |
\(y^2+xy+y=x^3-x^2+10216x-320037\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(6869/5, 584493/5)]$ |
| 196650.bi2 |
196650dy1 |
196650.bi |
196650dy |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{6} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$1.998581462$ |
$1$ |
|
$7$ |
$122880$ |
$0.619756$ |
$29503629/27968$ |
$0.79391$ |
$2.47371$ |
$[1, -1, 0, 483, 3141]$ |
\(y^2+xy=x^3-x^2+483x+3141\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(18, 123)]$ |
| 196650.di2 |
196650cb1 |
196650.di |
196650cb |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{6} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$2.532661311$ |
$1$ |
|
$5$ |
$368640$ |
$1.169062$ |
$29503629/27968$ |
$0.79391$ |
$3.01449$ |
$[1, -1, 1, 4345, -89153]$ |
\(y^2+xy+y=x^3-x^2+4345x-89153\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(73, 746)]$ |
| 251712.bc2 |
251712bc1 |
251712.bc |
251712bc |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{24} \cdot 3^{9} \cdot 19 \cdot 23 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$20.24107083$ |
$1$ |
|
$5$ |
$552960$ |
$1.404064$ |
$29503629/27968$ |
$0.79391$ |
$3.18141$ |
$[0, 0, 0, 11124, -360720]$ |
\(y^2=x^3+11124x-360720\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(84, 1080), (1969/2, 89225/2)]$ |
| 251712.bj2 |
251712bj1 |
251712.bj |
251712bj |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{24} \cdot 3^{9} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$7.755050253$ |
$1$ |
|
$1$ |
$552960$ |
$1.404064$ |
$29503629/27968$ |
$0.79391$ |
$3.18141$ |
$[0, 0, 0, 11124, 360720]$ |
\(y^2=x^3+11124x+360720\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(2089/2, 97525/2)]$ |
| 251712.dw2 |
251712dw1 |
251712.dw |
251712dw |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{24} \cdot 3^{3} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$5.093810215$ |
$1$ |
|
$1$ |
$184320$ |
$0.854757$ |
$29503629/27968$ |
$0.79391$ |
$2.65137$ |
$[0, 0, 0, 1236, 13360]$ |
\(y^2=x^3+1236x+13360\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(-15/2, 745/2)]$ |
| 251712.ed2 |
251712ed1 |
251712.ed |
251712ed |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{24} \cdot 3^{3} \cdot 19 \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$184320$ |
$0.854757$ |
$29503629/27968$ |
$0.79391$ |
$2.65137$ |
$[0, 0, 0, 1236, -13360]$ |
\(y^2=x^3+1236x-13360\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[ ]$ |
| 385434.r2 |
385434r1 |
385434.r |
385434r |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \cdot 23 \) |
\( - 2^{6} \cdot 3^{9} \cdot 7^{6} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$4.635599886$ |
$1$ |
|
$5$ |
$1036800$ |
$1.337297$ |
$29503629/27968$ |
$0.79391$ |
$3.01373$ |
$[1, -1, 0, 8517, 239525]$ |
\(y^2+xy=x^3-x^2+8517x+239525\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(-25, 115)]$ |
| 385434.fj2 |
385434fj1 |
385434.fj |
385434fj |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \cdot 23 \) |
\( - 2^{6} \cdot 3^{3} \cdot 7^{6} \cdot 19 \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10488$ |
$12$ |
$0$ |
$5.022987312$ |
$1$ |
|
$1$ |
$345600$ |
$0.787992$ |
$29503629/27968$ |
$0.79391$ |
$2.50124$ |
$[1, -1, 1, 946, -9187]$ |
\(y^2+xy+y=x^3-x^2+946x-9187\) |
2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? |
$[(181/3, 3305/3)]$ |