| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 37920.c1 |
37920c2 |
37920.c |
37920c |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 79 \) |
\( 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 79^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$4.079886308$ |
$1$ |
|
$11$ |
$24576$ |
$0.729928$ |
$284630612552/63190125$ |
$0.87472$ |
$3.09324$ |
$[0, -1, 0, -1096, -10604]$ |
\(y^2=x^3-x^2-1096x-10604\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(-20, 54), (-12, 26)]$ |
| 37920.o1 |
37920e2 |
37920.o |
37920e |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 79 \) |
\( 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$24576$ |
$0.729928$ |
$284630612552/63190125$ |
$0.87472$ |
$3.09324$ |
$[0, 1, 0, -1096, 10604]$ |
\(y^2=x^3+x^2-1096x+10604\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[ ]$ |
| 75840.bd1 |
75840bt2 |
75840.bd |
75840bt |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 79 \) |
\( 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1.360713056$ |
$1$ |
|
$5$ |
$98304$ |
$1.076502$ |
$284630612552/63190125$ |
$0.87472$ |
$3.27255$ |
$[0, -1, 0, -4385, 89217]$ |
\(y^2=x^3-x^2-4385x+89217\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(59, 180)]$ |
| 75840.cg1 |
75840cr2 |
75840.cg |
75840cr |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 79 \) |
\( 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$0.549160611$ |
$1$ |
|
$7$ |
$98304$ |
$1.076502$ |
$284630612552/63190125$ |
$0.87472$ |
$3.27255$ |
$[0, 1, 0, -4385, -89217]$ |
\(y^2=x^3+x^2-4385x-89217\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(-29, 120)]$ |
| 113760.v1 |
113760bo2 |
113760.v |
113760bo |
$2$ |
$2$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 79 \) |
\( 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$0.914914626$ |
$1$ |
|
$7$ |
$196608$ |
$1.279234$ |
$284630612552/63190125$ |
$0.87472$ |
$3.36755$ |
$[0, 0, 0, -9867, 296174]$ |
\(y^2=x^3-9867x+296174\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(-47, 810)]$ |
| 113760.bj1 |
113760bi2 |
113760.bj |
113760bi |
$2$ |
$2$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 79 \) |
\( 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$196608$ |
$1.279234$ |
$284630612552/63190125$ |
$0.87472$ |
$3.36755$ |
$[0, 0, 0, -9867, -296174]$ |
\(y^2=x^3-9867x-296174\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[ ]$ |
| 189600.h1 |
189600r2 |
189600.h |
189600r |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 79 \) |
\( 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$589824$ |
$1.534647$ |
$284630612552/63190125$ |
$0.87472$ |
$3.47820$ |
$[0, -1, 0, -27408, 1380312]$ |
\(y^2=x^3-x^2-27408x+1380312\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[ ]$ |
| 189600.bw1 |
189600k2 |
189600.bw |
189600k |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 79 \) |
\( 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$589824$ |
$1.534647$ |
$284630612552/63190125$ |
$0.87472$ |
$3.47820$ |
$[0, 1, 0, -27408, -1380312]$ |
\(y^2=x^3+x^2-27408x-1380312\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[ ]$ |
| 227520.t1 |
227520bj2 |
227520.t |
227520bj |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 79 \) |
\( 2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$786432$ |
$1.625807$ |
$284630612552/63190125$ |
$0.87472$ |
$3.51547$ |
$[0, 0, 0, -39468, 2369392]$ |
\(y^2=x^3-39468x+2369392\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[ ]$ |
| 227520.ca1 |
227520bq2 |
227520.ca |
227520bq |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 79 \) |
\( 2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$3.155932886$ |
$1$ |
|
$3$ |
$786432$ |
$1.625807$ |
$284630612552/63190125$ |
$0.87472$ |
$3.51547$ |
$[0, 0, 0, -39468, -2369392]$ |
\(y^2=x^3-39468x-2369392\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(226, 504)]$ |
| 379200.dk1 |
379200dk2 |
379200.dk |
379200dk |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 79 \) |
\( 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$7.617636284$ |
$1$ |
|
$1$ |
$2359296$ |
$1.881220$ |
$284630612552/63190125$ |
$0.87472$ |
$3.61427$ |
$[0, -1, 0, -109633, -10932863]$ |
\(y^2=x^3-x^2-109633x-10932863\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(-11103/8, 862127/8)]$ |
| 379200.fp1 |
379200fp2 |
379200.fp |
379200fp |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 79 \) |
\( 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1.738401208$ |
$1$ |
|
$7$ |
$2359296$ |
$1.881220$ |
$284630612552/63190125$ |
$0.87472$ |
$3.61427$ |
$[0, 1, 0, -109633, 10932863]$ |
\(y^2=x^3+x^2-109633x+10932863\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(263, 600)]$ |