| Label | Cremona label | Class | Cremona class | Class size | Class degree | Conductor | Discriminant | Rank | Torsion | $\textrm{End}^0(E_{\overline\Q})$ | CM | Sato-Tate | Semistable | Potentially good | Nonmax $\ell$ | $\ell$-adic images | mod-$\ell$ images | Adelic level | Adelic index | Adelic genus | Regulator | $Ш_{\textrm{an}}$ | Ш primes | Integral points | Modular degree | Faltings height | j-invariant | $abc$ quality | Szpiro ratio | Weierstrass coefficients | Weierstrass equation | mod-$m$ images | MW-generators | 
      
      
              | 4704.f1 | 4704t1 | 4704.f | 4704t | $1$ | $1$ | \(  2^{5} \cdot 3 \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{13} \cdot 7^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $8.065253045$ | $1$ |  | $2$ | $43680$ | $2.021038$ | $2731405432/1594323$ | $1.19582$ | $5.60839$ | $[0, -1, 0, 152864, -2188556]$ | \(y^2=x^3-x^2+152864x-2188556\) | 24.2.0.b.1 | $[(6180, 486758)]$ | 
      
              | 4704.l1 | 4704p1 | 4704.l | 4704p | $1$ | $1$ | \(  2^{5} \cdot 3 \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{13} \cdot 7^{4}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $6240$ | $1.048082$ | $2731405432/1594323$ | $1.19582$ | $4.22769$ | $[0, -1, 0, 3120, -7272]$ | \(y^2=x^3-x^2+3120x-7272\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 4704.w1 | 4704bb1 | 4704.w | 4704bb | $1$ | $1$ | \(  2^{5} \cdot 3 \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{13} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $43680$ | $2.021038$ | $2731405432/1594323$ | $1.19582$ | $5.60839$ | $[0, 1, 0, 152864, 2188556]$ | \(y^2=x^3+x^2+152864x+2188556\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 4704.bc1 | 4704z1 | 4704.bc | 4704z | $1$ | $1$ | \(  2^{5} \cdot 3 \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{13} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $0.356098002$ | $1$ |  | $6$ | $6240$ | $1.048082$ | $2731405432/1594323$ | $1.19582$ | $4.22769$ | $[0, 1, 0, 3120, 7272]$ | \(y^2=x^3+x^2+3120x+7272\) | 24.2.0.b.1 | $[(6, 162)]$ | 
      
              | 9408.o1 | 9408bo1 | 9408.o | 9408bo | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{13} \cdot 7^{4}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $24960$ | $1.394657$ | $2731405432/1594323$ | $1.19582$ | $4.36196$ | $[0, -1, 0, 12479, 45697]$ | \(y^2=x^3-x^2+12479x+45697\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 9408.bb1 | 9408bx1 | 9408.bb | 9408bx | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{13} \cdot 7^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $7.548444000$ | $1$ |  | $0$ | $174720$ | $2.367611$ | $2731405432/1594323$ | $1.19582$ | $5.63806$ | $[0, -1, 0, 611455, 16896993]$ | \(y^2=x^3-x^2+611455x+16896993\) | 24.2.0.b.1 | $[(3301/3, 460088/3)]$ | 
      
              | 9408.cg1 | 9408cl1 | 9408.cg | 9408cl | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{13} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $0.090145189$ | $1$ |  | $10$ | $24960$ | $1.394657$ | $2731405432/1594323$ | $1.19582$ | $4.36196$ | $[0, 1, 0, 12479, -45697]$ | \(y^2=x^3+x^2+12479x-45697\) | 24.2.0.b.1 | $[(23, 504)]$ | 
      
              | 9408.cp1 | 9408cs1 | 9408.cp | 9408cs | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{13} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $174720$ | $2.367611$ | $2731405432/1594323$ | $1.19582$ | $5.63806$ | $[0, 1, 0, 611455, -16896993]$ | \(y^2=x^3+x^2+611455x-16896993\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 14112.v1 | 14112l1 | 14112.v | 14112l | $1$ | $1$ | \(  2^{5} \cdot 3^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{19} \cdot 7^{4}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $49920$ | $1.597389$ | $2731405432/1594323$ | $1.19582$ | $4.43147$ | $[0, 0, 0, 28077, 168266]$ | \(y^2=x^3+28077x+168266\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 14112.w1 | 14112k1 | 14112.w | 14112k | $1$ | $1$ | \(  2^{5} \cdot 3^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{19} \cdot 7^{4}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $49920$ | $1.597389$ | $2731405432/1594323$ | $1.19582$ | $4.43147$ | $[0, 0, 0, 28077, -168266]$ | \(y^2=x^3+28077x-168266\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 14112.bn1 | 14112r1 | 14112.bn | 14112r | $1$ | $1$ | \(  2^{5} \cdot 3^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{19} \cdot 7^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $11.56538586$ | $1$ |  | $0$ | $349440$ | $2.570343$ | $2731405432/1594323$ | $1.19582$ | $5.65342$ | $[0, 0, 0, 1375773, -57715238]$ | \(y^2=x^3+1375773x-57715238\) | 24.2.0.b.1 | $[(6458918/77, 23870308932/77)]$ | 
      
              | 14112.bo1 | 14112q1 | 14112.bo | 14112q | $1$ | $1$ | \(  2^{5} \cdot 3^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{19} \cdot 7^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $11.56340581$ | $1$ |  | $0$ | $349440$ | $2.570343$ | $2731405432/1594323$ | $1.19582$ | $5.65342$ | $[0, 0, 0, 1375773, 57715238]$ | \(y^2=x^3+1375773x+57715238\) | 24.2.0.b.1 | $[(-503/23, 91379826/23)]$ | 
      
              | 28224.ci1 | 28224fn1 | 28224.ci | 28224fn | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{19} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $1397760$ | $2.916916$ | $2731405432/1594323$ | $1.19582$ | $5.67686$ | $[0, 0, 0, 5503092, 461721904]$ | \(y^2=x^3+5503092x+461721904\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 28224.ck1 | 28224fm1 | 28224.ck | 28224fm | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{19} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $1397760$ | $2.916916$ | $2731405432/1594323$ | $1.19582$ | $5.67686$ | $[0, 0, 0, 5503092, -461721904]$ | \(y^2=x^3+5503092x-461721904\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 28224.ef1 | 28224em1 | 28224.ef | 28224em | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{19} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $3.741354181$ | $1$ |  | $2$ | $199680$ | $1.943962$ | $2731405432/1594323$ | $1.19582$ | $4.53756$ | $[0, 0, 0, 112308, -1346128]$ | \(y^2=x^3+112308x-1346128\) | 24.2.0.b.1 | $[(382, 9864)]$ | 
      
              | 28224.eh1 | 28224el1 | 28224.eh | 28224el | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{19} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1.300185652$ | $1$ |  | $2$ | $199680$ | $1.943962$ | $2731405432/1594323$ | $1.19582$ | $4.53756$ | $[0, 0, 0, 112308, 1346128]$ | \(y^2=x^3+112308x+1346128\) | 24.2.0.b.1 | $[(1253, 45927)]$ | 
      
              | 117600.bq1 | 117600b1 | 117600.bq | 117600b | $1$ | $1$ | \(  2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $4.680377528$ | $1$ |  | $2$ | $873600$ | $1.852802$ | $2731405432/1594323$ | $1.19582$ | $3.88921$ | $[0, -1, 0, 77992, 753012]$ | \(y^2=x^3-x^2+77992x+753012\) | 24.2.0.b.1 | $[(628, 17234)]$ | 
      
              | 117600.cm1 | 117600p1 | 117600.cm | 117600p | $1$ | $1$ | \(  2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{13} \cdot 5^{6} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $6115200$ | $2.825756$ | $2731405432/1594323$ | $1.19582$ | $4.88924$ | $[0, -1, 0, 3821592, 265926312]$ | \(y^2=x^3-x^2+3821592x+265926312\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 117600.fw1 | 117600ct1 | 117600.fw | 117600ct | $1$ | $1$ | \(  2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{13} \cdot 5^{6} \cdot 7^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $3.514662332$ | $1$ |  | $2$ | $6115200$ | $2.825756$ | $2731405432/1594323$ | $1.19582$ | $4.88924$ | $[0, 1, 0, 3821592, -265926312]$ | \(y^2=x^3+x^2+3821592x-265926312\) | 24.2.0.b.1 | $[(102, 11178)]$ | 
      
              | 117600.gq1 | 117600ce1 | 117600.gq | 117600ce | $1$ | $1$ | \(  2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $873600$ | $1.852802$ | $2731405432/1594323$ | $1.19582$ | $3.88921$ | $[0, 1, 0, 77992, -753012]$ | \(y^2=x^3+x^2+77992x-753012\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 235200.fn1 | 235200fn1 | 235200.fn | 235200fn | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $9$ | $3$ | $0$ | $3494400$ | $2.199375$ | $2731405432/1594323$ | $1.19582$ | $4.00750$ | $[0, -1, 0, 311967, -6336063]$ | \(y^2=x^3-x^2+311967x-6336063\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 235200.iy1 | 235200iy1 | 235200.iy | 235200iy | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{13} \cdot 5^{6} \cdot 7^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $26.70695714$ | $1$ |  | $0$ | $24460800$ | $3.172329$ | $2731405432/1594323$ | $1.19582$ | $4.95149$ | $[0, -1, 0, 15286367, -2142696863]$ | \(y^2=x^3-x^2+15286367x-2142696863\) | 24.2.0.b.1 | $[(1017641654241/17765, 1592348083886687464/17765)]$ | 
      
              | 235200.tz1 | 235200tz1 | 235200.tz | 235200tz | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{13} \cdot 5^{6} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $24460800$ | $3.172329$ | $2731405432/1594323$ | $1.19582$ | $4.95149$ | $[0, 1, 0, 15286367, 2142696863]$ | \(y^2=x^3+x^2+15286367x+2142696863\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 235200.xo1 | 235200xo1 | 235200.xo | 235200xo | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $0.456062479$ | $1$ |  | $6$ | $3494400$ | $2.199375$ | $2731405432/1594323$ | $1.19582$ | $4.00750$ | $[0, 1, 0, 311967, 6336063]$ | \(y^2=x^3+x^2+311967x+6336063\) | 24.2.0.b.1 | $[(387, 13608)]$ | 
      
              | 352800.fs1 | 352800fs1 | 352800.fs | 352800fs | $1$ | $1$ | \(  2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{19} \cdot 5^{6} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $11.98803978$ | $1$ |  | $0$ | $6988800$ | $2.402107$ | $2731405432/1594323$ | $1.19582$ | $4.07075$ | $[0, 0, 0, 701925, 21033250]$ | \(y^2=x^3+701925x+21033250\) | 24.2.0.b.1 | $[(6050354/127, 37610420742/127)]$ | 
      
              | 352800.ft1 | 352800ft1 | 352800.ft | 352800ft | $1$ | $1$ | \(  2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{19} \cdot 5^{6} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $25$ | $5$ | $0$ | $48921600$ | $3.375065$ | $2731405432/1594323$ | $1.19582$ | $4.98478$ | $[0, 0, 0, 34394325, -7214404750]$ | \(y^2=x^3+34394325x-7214404750\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 352800.jm1 | 352800jm1 | 352800.jm | 352800jm | $1$ | $1$ | \(  2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{19} \cdot 5^{6} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $4.612888873$ | $1$ |  | $2$ | $6988800$ | $2.402107$ | $2731405432/1594323$ | $1.19582$ | $4.07075$ | $[0, 0, 0, 701925, -21033250]$ | \(y^2=x^3+701925x-21033250\) | 24.2.0.b.1 | $[(1729, 79758)]$ | 
      
              | 352800.jn1 | 352800jn1 | 352800.jn | 352800jn | $1$ | $1$ | \(  2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{9} \cdot 3^{19} \cdot 5^{6} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $9$ | $3$ | $0$ | $48921600$ | $3.375065$ | $2731405432/1594323$ | $1.19582$ | $4.98478$ | $[0, 0, 0, 34394325, 7214404750]$ | \(y^2=x^3+34394325x+7214404750\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 705600.ua1 | - | 705600.ua | - | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{19} \cdot 5^{6} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $2.135026814$ | $1$ |  | $2$ | $27955200$ | $2.748680$ | $2731405432/1594323$ | $1.19582$ | $4.17005$ | $[0, 0, 0, 2807700, -168266000]$ | \(y^2=x^3+2807700x-168266000\) | 24.2.0.b.1 | $[(296, 26244)]$ | 
      
              | 705600.ub1 | - | 705600.ub | - | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{19} \cdot 5^{6} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $25$ | $5$ | $0$ | $195686400$ | $3.721638$ | $2731405432/1594323$ | $1.19582$ | $5.03703$ | $[0, 0, 0, 137577300, 57715238000]$ | \(y^2=x^3+137577300x+57715238000\) | 24.2.0.b.1 | $[ ]$ | 
      
              | 705600.biu1 | - | 705600.biu | - | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{19} \cdot 5^{6} \cdot 7^{4}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $13.11586872$ | $1$ |  | $0$ | $27955200$ | $2.748680$ | $2731405432/1594323$ | $1.19582$ | $4.17005$ | $[0, 0, 0, 2807700, 168266000]$ | \(y^2=x^3+2807700x+168266000\) | 24.2.0.b.1 | $[(2343506/5, 3588132904/5)]$ | 
      
              | 705600.biv1 | - | 705600.biv | - | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}  \) | \(  - 2^{15} \cdot 3^{19} \cdot 5^{6} \cdot 7^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $24$ | $2$ | $0$ | $1$ | $4$ | $2$ | $0$ | $195686400$ | $3.721638$ | $2731405432/1594323$ | $1.19582$ | $5.03703$ | $[0, 0, 0, 137577300, -57715238000]$ | \(y^2=x^3+137577300x-57715238000\) | 24.2.0.b.1 | $[ ]$ |