| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 53130.s1 |
53130t4 |
53130.s |
53130t |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \) |
\( 2^{5} \cdot 3^{3} \cdot 5^{12} \cdot 7^{4} \cdot 11^{2} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.8 |
2B |
$2760$ |
$48$ |
$0$ |
$1.963846119$ |
$1$ |
|
$4$ |
$23592960$ |
$3.724934$ |
$265436898662503851515370589836169/17149152760523437500000$ |
$1.02138$ |
$6.86172$ |
$[1, 0, 1, -1338892969, 18856640041292]$ |
\(y^2+xy+y=x^3-1338892969x+18856640041292\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 12.12.0-4.c.1.1, 24.24.0-24.s.1.4, $\ldots$ |
$[(20158, 231662)]$ |
| 159390.dz1 |
159390k4 |
159390.dz |
159390k |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23 \) |
\( 2^{5} \cdot 3^{9} \cdot 5^{12} \cdot 7^{4} \cdot 11^{2} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2760$ |
$48$ |
$0$ |
$3.828004989$ |
$1$ |
|
$2$ |
$188743680$ |
$4.274239$ |
$265436898662503851515370589836169/17149152760523437500000$ |
$1.02138$ |
$6.78269$ |
$[1, -1, 1, -12050036717, -509129281114891]$ |
\(y^2+xy+y=x^3-x^2-12050036717x-509129281114891\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.s.1.1, 920.24.0.?, 2760.48.0.? |
$[(204417, 74526466)]$ |
| 265650.fg1 |
265650fg3 |
265650.fg |
265650fg |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 23 \) |
\( 2^{5} \cdot 3^{3} \cdot 5^{18} \cdot 7^{4} \cdot 11^{2} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$3.348887720$ |
$1$ |
|
$4$ |
$566231040$ |
$4.529655$ |
$265436898662503851515370589836169/17149152760523437500000$ |
$1.02138$ |
$6.75068$ |
$[1, 1, 1, -33472324213, 2357080005161531]$ |
\(y^2+xy+y=x^3+x^2-33472324213x+2357080005161531\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.s.1, 40.12.0-4.c.1.2, 60.12.0-4.c.1.1, $\ldots$ |
$[(105781, 32278)]$ |
| 371910.ba1 |
371910ba4 |
371910.ba |
371910ba |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 23 \) |
\( 2^{5} \cdot 3^{3} \cdot 5^{12} \cdot 7^{10} \cdot 11^{2} \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19320$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1132462080$ |
$4.697891$ |
$265436898662503851515370589836169/17149152760523437500000$ |
$1.02138$ |
$6.73099$ |
$[1, 1, 0, -65605755457, -6467893139918699]$ |
\(y^2+xy=x^3+x^2-65605755457x-6467893139918699\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.s.1, 56.12.0-4.c.1.1, 84.12.0.?, $\ldots$ |
$[ ]$ |
| 425040.bs1 |
425040bs4 |
425040.bs |
425040bs |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \) |
\( 2^{17} \cdot 3^{3} \cdot 5^{12} \cdot 7^{4} \cdot 11^{2} \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$566231040$ |
$4.418083$ |
$265436898662503851515370589836169/17149152760523437500000$ |
$1.02138$ |
$6.40255$ |
$[0, -1, 0, -21422287496, -1206824962642704]$ |
\(y^2=x^3-x^2-21422287496x-1206824962642704\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.2, 24.24.0-24.s.1.3, $\ldots$ |
$[ ]$ |