Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
99372.k1 |
99372k1 |
99372.k |
99372k |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$0.471142088$ |
$1$ |
|
$6$ |
$157248$ |
$1.147413$ |
$23296/9$ |
$0.67779$ |
$3.23640$ |
$[0, -1, 0, -5126, -79743]$ |
\(y^2=x^3-x^2-5126x-79743\) |
2.2.0.a.1, 84.4.0.?, 182.6.0.?, 1092.12.0.? |
$[(-56, 169)]$ |
99372.s1 |
99372h1 |
99372.s |
99372h |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1.618238938$ |
$1$ |
|
$2$ |
$12096$ |
$-0.135062$ |
$23296/9$ |
$0.67779$ |
$1.89894$ |
$[0, -1, 0, -30, -27]$ |
\(y^2=x^3-x^2-30x-27\) |
2.2.0.a.1, 182.6.0.?, 1092.12.0.? |
$[(-1, 1)]$ |
99372.bm1 |
99372bd1 |
99372.bm |
99372bd |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1.190921768$ |
$1$ |
|
$2$ |
$84672$ |
$0.837893$ |
$23296/9$ |
$0.67779$ |
$2.91361$ |
$[0, 1, 0, -1486, 12221]$ |
\(y^2=x^3+x^2-1486x+12221\) |
2.2.0.a.1, 156.4.0.?, 182.6.0.?, 1092.12.0.? |
$[(65, 441)]$ |
99372.bp1 |
99372bb1 |
99372.bp |
99372bb |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{8} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$5.595947413$ |
$1$ |
|
$2$ |
$1100736$ |
$2.120369$ |
$23296/9$ |
$0.67779$ |
$4.25107$ |
$[0, 1, 0, -251190, 27854217]$ |
\(y^2=x^3+x^2-251190x+27854217\) |
2.2.0.a.1, 12.4.0-2.a.1.1, 182.6.0.?, 1092.12.0.? |
$[(606, 9927)]$ |
298116.bc1 |
298116bc1 |
298116.bc |
298116bc |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{2} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$364$ |
$12$ |
$0$ |
$0.822854519$ |
$1$ |
|
$14$ |
$96768$ |
$0.414244$ |
$23296/9$ |
$0.67779$ |
$2.25637$ |
$[0, 0, 0, -273, 1001]$ |
\(y^2=x^3-273x+1001\) |
2.2.0.a.1, 182.6.0.?, 364.12.0.? |
$[(1, 27), (-17, 27)]$ |
298116.be1 |
298116be1 |
298116.be |
298116be |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{8} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.4.0.2 |
2Cn |
$364$ |
$12$ |
$0$ |
$14.33194210$ |
$1$ |
|
$0$ |
$8805888$ |
$2.669674$ |
$23296/9$ |
$0.67779$ |
$4.40350$ |
$[0, 0, 0, -2260713, -754324571]$ |
\(y^2=x^3-2260713x-754324571\) |
2.2.0.a.1, 4.4.0-2.a.1.1, 182.6.0.?, 364.12.0.? |
$[(-2465167/58, 4401152127/58)]$ |
298116.cl1 |
298116cl1 |
298116.cl |
298116cl |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{2} \cdot 13^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$364$ |
$12$ |
$0$ |
$3.382364893$ |
$1$ |
|
$6$ |
$1257984$ |
$1.696718$ |
$23296/9$ |
$0.67779$ |
$3.47726$ |
$[0, 0, 0, -46137, 2199197]$ |
\(y^2=x^3-46137x+2199197\) |
2.2.0.a.1, 28.4.0-2.a.1.1, 182.6.0.?, 364.12.0.? |
$[(169/2, 4563/2), (676, 16731)]$ |
298116.cn1 |
298116cn1 |
298116.cn |
298116cn |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$364$ |
$12$ |
$0$ |
$0.569134801$ |
$1$ |
|
$4$ |
$677376$ |
$1.387199$ |
$23296/9$ |
$0.67779$ |
$3.18260$ |
$[0, 0, 0, -13377, -343343]$ |
\(y^2=x^3-13377x-343343\) |
2.2.0.a.1, 52.4.0-2.a.1.1, 182.6.0.?, 364.12.0.? |
$[(-49, 441)]$ |
397488.bz1 |
397488bz1 |
397488.bz |
397488bz |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$338688$ |
$0.837893$ |
$23296/9$ |
$0.67779$ |
$2.60033$ |
$[0, -1, 0, -1486, -12221]$ |
\(y^2=x^3-x^2-1486x-12221\) |
2.2.0.a.1, 156.4.0.?, 182.6.0.?, 1092.12.0.? |
$[ ]$ |
397488.df1 |
397488df1 |
397488.df |
397488df |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{8} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4402944$ |
$2.120369$ |
$23296/9$ |
$0.67779$ |
$3.79398$ |
$[0, -1, 0, -251190, -27854217]$ |
\(y^2=x^3-x^2-251190x-27854217\) |
2.2.0.a.1, 12.4.0-2.a.1.1, 182.6.0.?, 1092.12.0.? |
$[ ]$ |
397488.hb1 |
397488hb1 |
397488.hb |
397488hb |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$628992$ |
$1.147413$ |
$23296/9$ |
$0.67779$ |
$2.88841$ |
$[0, 1, 0, -5126, 79743]$ |
\(y^2=x^3+x^2-5126x+79743\) |
2.2.0.a.1, 84.4.0.?, 182.6.0.?, 1092.12.0.? |
$[ ]$ |
397488.im1 |
397488im1 |
397488.im |
397488im |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$48384$ |
$-0.135062$ |
$23296/9$ |
$0.67779$ |
$1.69476$ |
$[0, 1, 0, -30, 27]$ |
\(y^2=x^3+x^2-30x+27\) |
2.2.0.a.1, 182.6.0.?, 1092.12.0.? |
$[ ]$ |