| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 5496.b1 |
5496a1 |
5496.b |
5496a |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 229 \) |
\( 2^{4} \cdot 3^{6} \cdot 229 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$816$ |
$-0.023153$ |
$2110056448/166941$ |
$0.84764$ |
$2.81505$ |
$[0, -1, 0, -67, 220]$ |
\(y^2=x^3-x^2-67x+220\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[ ]$ |
$1$ |
| 10992.f1 |
10992b1 |
10992.f |
10992b |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 229 \) |
\( 2^{4} \cdot 3^{6} \cdot 229 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1632$ |
$-0.023153$ |
$2110056448/166941$ |
$0.84764$ |
$2.60535$ |
$[0, 1, 0, -67, -220]$ |
\(y^2=x^3+x^2-67x-220\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[ ]$ |
$1$ |
| 16488.c1 |
16488b1 |
16488.c |
16488b |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 229 \) |
\( 2^{4} \cdot 3^{12} \cdot 229 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6528$ |
$0.526154$ |
$2110056448/166941$ |
$0.84764$ |
$3.17539$ |
$[0, 0, 0, -606, -5335]$ |
\(y^2=x^3-606x-5335\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[ ]$ |
$1$ |
| 32976.c1 |
32976d1 |
32976.c |
32976d |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 229 \) |
\( 2^{4} \cdot 3^{12} \cdot 229 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$13056$ |
$0.526154$ |
$2110056448/166941$ |
$0.84764$ |
$2.96382$ |
$[0, 0, 0, -606, 5335]$ |
\(y^2=x^3-606x+5335\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[ ]$ |
$1$ |
| 43968.b1 |
43968m1 |
43968.b |
43968m |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 229 \) |
\( 2^{10} \cdot 3^{6} \cdot 229 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$1.719090977$ |
$1$ |
|
$5$ |
$13056$ |
$0.323421$ |
$2110056448/166941$ |
$0.84764$ |
$2.65652$ |
$[0, -1, 0, -269, -1491]$ |
\(y^2=x^3-x^2-269x-1491\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[(-11, 4)]$ |
$1$ |
| 43968.k1 |
43968g1 |
43968.k |
43968g |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 229 \) |
\( 2^{10} \cdot 3^{6} \cdot 229 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$1.396354763$ |
$1$ |
|
$5$ |
$13056$ |
$0.323421$ |
$2110056448/166941$ |
$0.84764$ |
$2.65652$ |
$[0, 1, 0, -269, 1491]$ |
\(y^2=x^3+x^2-269x+1491\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[(-2, 45)]$ |
$1$ |
| 131904.bs1 |
131904s1 |
131904.bs |
131904s |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 229 \) |
\( 2^{10} \cdot 3^{12} \cdot 229 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$104448$ |
$0.872727$ |
$2110056448/166941$ |
$0.84764$ |
$2.96808$ |
$[0, 0, 0, -2424, 42680]$ |
\(y^2=x^3-2424x+42680\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[ ]$ |
$1$ |
| 131904.bv1 |
131904bt1 |
131904.bv |
131904bt |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 229 \) |
\( 2^{10} \cdot 3^{12} \cdot 229 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$7.496961710$ |
$1$ |
|
$1$ |
$104448$ |
$0.872727$ |
$2110056448/166941$ |
$0.84764$ |
$2.96808$ |
$[0, 0, 0, -2424, -42680]$ |
\(y^2=x^3-2424x-42680\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[(7430/11, 266220/11)]$ |
$1$ |
| 137400.k1 |
137400k1 |
137400.k |
137400k |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 229 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{6} \cdot 229 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$0.988296458$ |
$1$ |
|
$21$ |
$104448$ |
$0.781567$ |
$2110056448/166941$ |
$0.84764$ |
$2.86537$ |
$[0, 1, 0, -1683, 24138]$ |
\(y^2=x^3+x^2-1683x+24138\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[(33, 75), (-42, 150)]$ |
$1$ |
| 269304.n1 |
269304n1 |
269304.n |
269304n |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 229 \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{6} \cdot 229 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$2.347650332$ |
$1$ |
|
$5$ |
$235008$ |
$0.949802$ |
$2110056448/166941$ |
$0.84764$ |
$2.87262$ |
$[0, 1, 0, -3299, -68874]$ |
\(y^2=x^3+x^2-3299x-68874\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[(-29, 57)]$ |
$1$ |
| 274800.bc1 |
274800bc1 |
274800.bc |
274800bc |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 229 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{6} \cdot 229 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$5.900021261$ |
$1$ |
|
$1$ |
$208896$ |
$0.781567$ |
$2110056448/166941$ |
$0.84764$ |
$2.70678$ |
$[0, -1, 0, -1683, -24138]$ |
\(y^2=x^3-x^2-1683x-24138\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[(1733/2, 71725/2)]$ |
$1$ |
| 412200.d1 |
412200d1 |
412200.d |
412200d |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 229 \) |
\( 2^{4} \cdot 3^{12} \cdot 5^{6} \cdot 229 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2748$ |
$12$ |
$0$ |
$1.337880651$ |
$1$ |
|
$7$ |
$835584$ |
$1.330873$ |
$2110056448/166941$ |
$0.84764$ |
$3.13172$ |
$[0, 0, 0, -15150, -666875]$ |
\(y^2=x^3-15150x-666875\) |
2.3.0.a.1, 12.6.0.c.1, 458.6.0.?, 2748.12.0.? |
$[(-70, 225)]$ |
$1$ |