| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 3315.b4 |
3315e4 |
3315.b |
3315e |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 5^{8} \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.6 |
2B |
$1768$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4096$ |
$0.934161$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.25810$ |
$[1, 0, 0, 124, -36195]$ |
\(y^2+xy=x^3+124x-36195\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 52.12.0-4.c.1.2, 68.12.0-4.c.1.1, $\ldots$ |
$[ ]$ |
| 9945.k4 |
9945i4 |
9945.k |
9945i |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 3^{14} \cdot 5^{8} \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5304$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$32768$ |
$1.483467$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.46600$ |
$[1, -1, 0, 1116, 977265]$ |
\(y^2+xy=x^3-x^2+1116x+977265\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[ ]$ |
| 16575.f4 |
16575a4 |
16575.f |
16575a |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 5^{14} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8840$ |
$48$ |
$0$ |
$9.238254646$ |
$1$ |
|
$0$ |
$98304$ |
$1.738880$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.54665$ |
$[1, 1, 0, 3100, -4524375]$ |
\(y^2+xy=x^3+x^2+3100x-4524375\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(70319/14, 17486365/14)]$ |
| 43095.p4 |
43095q3 |
43095.p |
43095q |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 3^{8} \cdot 5^{8} \cdot 13^{7} \cdot 17 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1768$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$688128$ |
$2.216637$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.67679$ |
$[1, 0, 1, 20952, -79541369]$ |
\(y^2+xy+y=x^3+20952x-79541369\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 104.24.0.?, 136.24.0.?, 884.24.0.?, $\ldots$ |
$[ ]$ |
| 49725.e4 |
49725j3 |
49725.e |
49725j |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 3^{14} \cdot 5^{14} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$4.037580738$ |
$1$ |
|
$2$ |
$786432$ |
$2.288185$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.69430$ |
$[1, -1, 1, 27895, 122186022]$ |
\(y^2+xy+y=x^3-x^2+27895x+122186022\) |
2.3.0.a.1, 4.6.0.c.1, 104.12.0.?, 120.12.0.?, 136.12.0.?, $\ldots$ |
$[(1163, 40971)]$ |
| 53040.b4 |
53040bq3 |
53040.b |
53040bq |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{8} \cdot 5^{8} \cdot 13 \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1768$ |
$48$ |
$0$ |
$9.858942069$ |
$1$ |
|
$7$ |
$262144$ |
$1.627308$ |
$210751100351/566398828125$ |
$0.99333$ |
$3.93746$ |
$[0, -1, 0, 1984, 2316480]$ |
\(y^2=x^3-x^2+1984x+2316480\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 52.12.0-4.c.1.1, 68.12.0-4.c.1.2, $\ldots$ |
$[(-46, 1458), (221/2, 12879/2)]$ |
| 56355.f4 |
56355l3 |
56355.f |
56355l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 3^{8} \cdot 5^{8} \cdot 13 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1768$ |
$48$ |
$0$ |
$1.416572691$ |
$1$ |
|
$4$ |
$1179648$ |
$2.350769$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.70924$ |
$[1, 1, 1, 35830, -177861868]$ |
\(y^2+xy+y=x^3+x^2+35830x-177861868\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 104.24.0.?, 136.24.0.?, 884.24.0.?, $\ldots$ |
$[(885, 22966)]$ |
| 129285.c4 |
129285t3 |
129285.c |
129285t |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 3^{14} \cdot 5^{8} \cdot 13^{7} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5304$ |
$48$ |
$0$ |
$6.344624480$ |
$1$ |
|
$12$ |
$5505024$ |
$2.765942$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.80030$ |
$[1, -1, 1, 188572, 2147616956]$ |
\(y^2+xy+y=x^3-x^2+188572x+2147616956\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(790, 52417), (2665, 145542)]$ |
| 159120.cr4 |
159120d3 |
159120.cr |
159120d |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{14} \cdot 5^{8} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5304$ |
$48$ |
$0$ |
$3.238485885$ |
$1$ |
|
$5$ |
$2097152$ |
$2.176617$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.12664$ |
$[0, 0, 0, 17853, -62562814]$ |
\(y^2=x^3+17853x-62562814\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(1007, 31250)]$ |
| 162435.v4 |
162435t4 |
162435.v |
162435t |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 5^{8} \cdot 7^{6} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$12376$ |
$48$ |
$0$ |
$1.576821592$ |
$1$ |
|
$4$ |
$1179648$ |
$1.907116$ |
$210751100351/566398828125$ |
$0.99333$ |
$3.85001$ |
$[1, 1, 1, 6075, 12420960]$ |
\(y^2+xy+y=x^3+x^2+6075x+12420960\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(83, 3633)]$ |
| 169065.u4 |
169065bb4 |
169065.u |
169065bb |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 3^{14} \cdot 5^{8} \cdot 13 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5304$ |
$48$ |
$0$ |
$14.37166286$ |
$1$ |
|
$0$ |
$9437184$ |
$2.900074$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.82703$ |
$[1, -1, 0, 322470, 4802592901]$ |
\(y^2+xy=x^3-x^2+322470x+4802592901\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(13171533/124, 143217246829/124)]$ |
| 212160.dq4 |
212160gx3 |
212160.dq |
212160gx |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{18} \cdot 3^{8} \cdot 5^{8} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$1768$ |
$48$ |
$0$ |
$7.418033454$ |
$1$ |
|
$1$ |
$2097152$ |
$1.973883$ |
$210751100351/566398828125$ |
$0.99333$ |
$3.83150$ |
$[0, -1, 0, 7935, -18539775]$ |
\(y^2=x^3-x^2+7935x-18539775\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 104.24.0.?, 136.24.0.?, $\ldots$ |
$[(10344/5, 930447/5)]$ |
| 212160.gc4 |
212160f4 |
212160.gc |
212160f |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{18} \cdot 3^{8} \cdot 5^{8} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$1768$ |
$48$ |
$0$ |
$0.494558584$ |
$1$ |
|
$11$ |
$2097152$ |
$1.973883$ |
$210751100351/566398828125$ |
$0.99333$ |
$3.83150$ |
$[0, 1, 0, 7935, 18539775]$ |
\(y^2=x^3+x^2+7935x+18539775\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 104.24.0.?, 136.24.0.?, $\ldots$ |
$[(15, 4320)]$ |
| 215475.p4 |
215475w3 |
215475.p |
215475w |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 3^{8} \cdot 5^{14} \cdot 13^{7} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8840$ |
$48$ |
$0$ |
$18.00995873$ |
$1$ |
|
$0$ |
$16515072$ |
$3.021355$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.85020$ |
$[1, 1, 1, 523812, -9942671094]$ |
\(y^2+xy+y=x^3+x^2+523812x-9942671094\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(529736029/220, 12115234295477/220)]$ |
| 265200.gx4 |
265200gx4 |
265200.gx |
265200gx |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{8} \cdot 5^{14} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8840$ |
$48$ |
$0$ |
$4.621923326$ |
$1$ |
|
$3$ |
$6291456$ |
$2.432026$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.20327$ |
$[0, 1, 0, 49592, 289659188]$ |
\(y^2=x^3+x^2+49592x+289659188\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(-196, 16506)]$ |
| 281775.cf4 |
281775cf3 |
281775.cf |
281775cf |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{8} \cdot 5^{14} \cdot 13 \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$28311552$ |
$3.155487$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.87478$ |
$[1, 0, 1, 895749, -22234524977]$ |
\(y^2+xy+y=x^3+895749x-22234524977\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[ ]$ |
| 401115.bp4 |
401115bp4 |
401115.bp |
401115bp |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 5^{8} \cdot 11^{6} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19448$ |
$48$ |
$0$ |
$4.264868879$ |
$1$ |
|
$0$ |
$5898240$ |
$2.133110$ |
$210751100351/566398828125$ |
$0.99333$ |
$3.79045$ |
$[1, 0, 1, 15001, 48190547]$ |
\(y^2+xy+y=x^3+15001x+48190547\) |
2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 104.12.0.?, 136.12.0.?, $\ldots$ |
$[(21/4, 444301/4)]$ |
| 487305.cx4 |
487305cx3 |
487305.cx |
487305cx |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{14} \cdot 5^{8} \cdot 7^{6} \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$37128$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$9437184$ |
$2.456421$ |
$210751100351/566398828125$ |
$0.99333$ |
$4.03036$ |
$[1, -1, 0, 54675, -335311250]$ |
\(y^2+xy=x^3-x^2+54675x-335311250\) |
2.3.0.a.1, 4.6.0.c.1, 104.12.0.?, 136.12.0.?, 168.12.0.?, $\ldots$ |
$[ ]$ |