| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 2090.b1 |
2090e3 |
2090.b |
2090e |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 11 \cdot 19 \) |
\( 2^{6} \cdot 5^{6} \cdot 11 \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
2.3.0.1, 3.8.0.2 |
2B, 3B.1.2 |
$25080$ |
$96$ |
$1$ |
$0.526683305$ |
$1$ |
|
$7$ |
$2592$ |
$0.788006$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.31380$ |
$[1, 0, 1, -1239, -10438]$ |
\(y^2+xy+y=x^3-1239x-10438\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 40.6.0.d.1, 120.48.0.?, $\ldots$ |
$[(-17, 84)]$ |
| 10450.bg1 |
10450bb3 |
10450.bg |
10450bb |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 19 \) |
\( 2^{6} \cdot 5^{12} \cdot 11 \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$62208$ |
$1.592724$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.60705$ |
$[1, 1, 1, -30963, -1304719]$ |
\(y^2+xy+y=x^3+x^2-30963x-1304719\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.1, 24.24.0-6.a.1.15, $\ldots$ |
$[ ]$ |
| 16720.bh1 |
16720s3 |
16720.bh |
16720s |
$4$ |
$6$ |
\( 2^{4} \cdot 5 \cdot 11 \cdot 19 \) |
\( 2^{18} \cdot 5^{6} \cdot 11 \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$62208$ |
$1.481153$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.24669$ |
$[0, -1, 0, -19816, 668016]$ |
\(y^2=x^3-x^2-19816x+668016\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 40.6.0.d.1, $\ldots$ |
$[ ]$ |
| 18810.z1 |
18810be3 |
18810.z |
18810be |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 19 \) |
\( 2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 11 \cdot 19^{3} \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$25080$ |
$96$ |
$1$ |
$2.099814595$ |
$1$ |
|
$13$ |
$62208$ |
$1.337313$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.02050$ |
$[1, -1, 1, -11147, 281819]$ |
\(y^2+xy+y=x^3-x^2-11147x+281819\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 40.6.0.d.1, 120.48.0.?, $\ldots$ |
$[(-23, 736)]$ |
| 22990.x1 |
22990v3 |
22990.x |
22990v |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 19 \) |
\( 2^{6} \cdot 5^{6} \cdot 11^{7} \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$3.214348691$ |
$1$ |
|
$5$ |
$311040$ |
$1.986954$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.71641$ |
$[1, 0, 0, -149861, 13742785]$ |
\(y^2+xy=x^3-149861x+13742785\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 33.8.0-3.a.1.1, 40.6.0.d.1, $\ldots$ |
$[(-144, 5759)]$ |
| 39710.ba1 |
39710x3 |
39710.ba |
39710x |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 11 \cdot 19^{2} \) |
\( 2^{6} \cdot 5^{6} \cdot 11 \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$933120$ |
$2.260223$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.78266$ |
$[1, 1, 1, -447106, 70698319]$ |
\(y^2+xy+y=x^3+x^2-447106x+70698319\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 57.8.0-3.a.1.2, $\ldots$ |
$[ ]$ |
| 66880.bc1 |
66880dw3 |
66880.bc |
66880dw |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 11 \cdot 19 \) |
\( 2^{24} \cdot 5^{6} \cdot 11 \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$0.846913736$ |
$1$ |
|
$5$ |
$497664$ |
$1.827726$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.09114$ |
$[0, 1, 0, -79265, 5264863]$ |
\(y^2=x^3+x^2-79265x+5264863\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.14, 40.6.0.d.1, $\ldots$ |
$[(21, 1900)]$ |
| 66880.dd1 |
66880y3 |
66880.dd |
66880y |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 11 \cdot 19 \) |
\( 2^{24} \cdot 5^{6} \cdot 11 \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$497664$ |
$1.827726$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.09114$ |
$[0, -1, 0, -79265, -5264863]$ |
\(y^2=x^3-x^2-79265x-5264863\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.3, 40.6.0.d.1, $\ldots$ |
$[ ]$ |
| 83600.c1 |
83600bi3 |
83600.c |
83600bi |
$4$ |
$6$ |
\( 2^{4} \cdot 5^{2} \cdot 11 \cdot 19 \) |
\( 2^{18} \cdot 5^{12} \cdot 11 \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$1492992$ |
$2.285873$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.49567$ |
$[0, 1, 0, -495408, 82511188]$ |
\(y^2=x^3+x^2-495408x+82511188\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.2, 40.6.0.d.1, $\ldots$ |
$[ ]$ |
| 94050.cb1 |
94050v3 |
94050.cb |
94050v |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 19 \) |
\( 2^{6} \cdot 3^{6} \cdot 5^{12} \cdot 11 \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1.831193899$ |
$1$ |
|
$3$ |
$1492992$ |
$2.142033$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.29870$ |
$[1, -1, 0, -278667, 34948741]$ |
\(y^2+xy=x^3-x^2-278667x+34948741\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.2, 24.24.0-6.a.1.7, $\ldots$ |
$[(539, 6143)]$ |
| 102410.bb1 |
102410x3 |
102410.bb |
102410x |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 19 \) |
\( 2^{6} \cdot 5^{6} \cdot 7^{6} \cdot 11 \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$175560$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$746496$ |
$1.760962$ |
$210103680895849/75449000000$ |
$0.92271$ |
$3.87060$ |
$[1, 1, 0, -60687, 3519461]$ |
\(y^2+xy=x^3+x^2-60687x+3519461\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.2, 40.6.0.d.1, $\ldots$ |
$[ ]$ |
| 114950.bk1 |
114950q3 |
114950.bk |
114950q |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( 2^{6} \cdot 5^{12} \cdot 11^{7} \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$7464960$ |
$2.791672$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.89370$ |
$[1, 1, 0, -3746525, 1717848125]$ |
\(y^2+xy=x^3+x^2-3746525x+1717848125\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 120.24.0.?, $\ldots$ |
$[ ]$ |
| 150480.eh1 |
150480be3 |
150480.eh |
150480be |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 19 \) |
\( 2^{18} \cdot 3^{6} \cdot 5^{6} \cdot 11 \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$3.611611689$ |
$1$ |
|
$5$ |
$1492992$ |
$2.030460$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.01692$ |
$[0, 0, 0, -178347, -17858086]$ |
\(y^2=x^3-178347x-17858086\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 40.6.0.d.1, $\ldots$ |
$[(-235, 3328)]$ |
| 183920.cg1 |
183920bn3 |
183920.cg |
183920bn |
$4$ |
$6$ |
\( 2^{4} \cdot 5 \cdot 11^{2} \cdot 19 \) |
\( 2^{18} \cdot 5^{6} \cdot 11^{7} \cdot 19^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$5.148257362$ |
$1$ |
|
$7$ |
$7464960$ |
$2.680099$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.59351$ |
$[0, -1, 0, -2397776, -879538240]$ |
\(y^2=x^3-x^2-2397776x-879538240\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 120.24.0.?, $\ldots$ |
$[(5944, 441408), (-590, 18150)]$ |
| 198550.j1 |
198550ca3 |
198550.j |
198550ca |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) |
\( 2^{6} \cdot 5^{12} \cdot 11 \cdot 19^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$5.714929706$ |
$1$ |
|
$1$ |
$22394880$ |
$3.064945$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.94327$ |
$[1, 0, 1, -11177651, 8859645198]$ |
\(y^2+xy+y=x^3-11177651x+8859645198\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 120.24.0.?, $\ldots$ |
$[(664447/9, 496344824/9)]$ |
| 206910.cq1 |
206910dq3 |
206910.cq |
206910dq |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 19 \) |
\( 2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 11^{7} \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$7464960$ |
$2.536259$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.40829$ |
$[1, -1, 0, -1348749, -371055195]$ |
\(y^2+xy=x^3-x^2-1348749x-371055195\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 33.8.0-3.a.1.2, 40.6.0.d.1, $\ldots$ |
$[ ]$ |
| 317680.o1 |
317680o3 |
317680.o |
317680o |
$4$ |
$6$ |
\( 2^{4} \cdot 5 \cdot 11 \cdot 19^{2} \) |
\( 2^{18} \cdot 5^{6} \cdot 11 \cdot 19^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$13.36682097$ |
$1$ |
|
$1$ |
$22394880$ |
$2.953373$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.65419$ |
$[0, 1, 0, -7153696, -4538999820]$ |
\(y^2=x^3+x^2-7153696x-4538999820\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 120.24.0.?, $\ldots$ |
$[(-4958870/51, 6184195840/51)]$ |
| 334400.bl1 |
334400bl3 |
334400.bl |
334400bl |
$4$ |
$6$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \cdot 19 \) |
\( 2^{24} \cdot 5^{12} \cdot 11 \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$12.14703543$ |
$1$ |
|
$1$ |
$11943936$ |
$2.632446$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.33266$ |
$[0, 1, 0, -1981633, -662071137]$ |
\(y^2=x^3+x^2-1981633x-662071137\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 40.6.0.d.1, $\ldots$ |
$[(17565483/71, 66723072000/71)]$ |
| 334400.ft1 |
334400ft3 |
334400.ft |
334400ft |
$4$ |
$6$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \cdot 19 \) |
\( 2^{24} \cdot 5^{12} \cdot 11 \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$11943936$ |
$2.632446$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.33266$ |
$[0, -1, 0, -1981633, 662071137]$ |
\(y^2=x^3-x^2-1981633x+662071137\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 40.6.0.d.1, $\ldots$ |
$[ ]$ |
| 353210.bi1 |
353210bi3 |
353210.bi |
353210bi |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 11 \cdot 13^{2} \cdot 19 \) |
\( 2^{6} \cdot 5^{6} \cdot 11 \cdot 13^{6} \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$326040$ |
$96$ |
$1$ |
$1.363222112$ |
$1$ |
|
$7$ |
$5971968$ |
$2.070480$ |
$210103680895849/75449000000$ |
$0.92271$ |
$3.78622$ |
$[1, 0, 0, -209310, -22722428]$ |
\(y^2+xy=x^3-209310x-22722428\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 39.8.0-3.a.1.2, 40.6.0.d.1, $\ldots$ |
$[(534, 3958)]$ |
| 357390.bd1 |
357390bd3 |
357390.bd |
357390bd |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 19^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 11 \cdot 19^{9} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$4.032494671$ |
$1$ |
|
$15$ |
$22394880$ |
$2.809532$ |
$210103680895849/75449000000$ |
$0.92271$ |
$4.47633$ |
$[1, -1, 0, -4023954, -1912878572]$ |
\(y^2+xy=x^3-x^2-4023954x-1912878572\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 57.8.0-3.a.1.1, $\ldots$ |
$[(-603, 17449), (-16507/4, 2193599/4)]$ |
| 436810.bh1 |
436810bh3 |
436810.bh |
436810bh |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) |
\( 2^{6} \cdot 5^{6} \cdot 11^{7} \cdot 19^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$25080$ |
$96$ |
$1$ |
$49.75925190$ |
$1$ |
|
$1$ |
$111974400$ |
$3.459171$ |
$210103680895849/75449000000$ |
$0.92271$ |
$5.00742$ |
$[1, 1, 0, -54099828, -94369961968]$ |
\(y^2+xy=x^3+x^2-54099828x-94369961968\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 40.6.0.d.1, 120.48.0.?, $\ldots$ |
$[(-94489815396885268629512/4030573731, 10242793213757590269388409604324716/4030573731)]$ |