Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
13260.e1 |
13260a1 |
13260.e |
13260a |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{6} \cdot 13 \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$46080$ |
$1.498951$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$4.73466$ |
$[0, -1, 0, -66841, -6625334]$ |
\(y^2=x^3-x^2-66841x-6625334\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[ ]$ |
39780.v1 |
39780w1 |
39780.v |
39780w |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{6} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$0.709711476$ |
$1$ |
|
$5$ |
$368640$ |
$2.048256$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$4.86592$ |
$[0, 0, 0, -601572, 179485589]$ |
\(y^2=x^3-601572x+179485589\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ |
$[(643, 7650)]$ |
53040.bq1 |
53040cf1 |
53040.bq |
53040cf |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{6} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$2.114040445$ |
$1$ |
|
$3$ |
$184320$ |
$1.498951$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$4.13132$ |
$[0, 1, 0, -66841, 6625334]$ |
\(y^2=x^3+x^2-66841x+6625334\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[(3614, 216750)]$ |
66300.bc1 |
66300bf1 |
66300.bc |
66300bf |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{12} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$7.165632266$ |
$1$ |
|
$3$ |
$1105920$ |
$2.303669$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$4.91810$ |
$[0, 1, 0, -1671033, -831508812]$ |
\(y^2=x^3+x^2-1671033x-831508812\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[(23952, 3701478)]$ |
159120.dh1 |
159120l1 |
159120.dh |
159120l |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{6} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$1.856763865$ |
$1$ |
|
$3$ |
$1474560$ |
$2.048256$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$4.30272$ |
$[0, 0, 0, -601572, -179485589]$ |
\(y^2=x^3-601572x-179485589\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ |
$[(1397, 41310)]$ |
172380.j1 |
172380s1 |
172380.j |
172380s |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{6} \cdot 13^{7} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$5.161078373$ |
$1$ |
|
$3$ |
$7741440$ |
$2.781425$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$5.00384$ |
$[0, -1, 0, -11296185, -14601043458]$ |
\(y^2=x^3-x^2-11296185x-14601043458\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[(-1966, 2120)]$ |
198900.n1 |
198900be1 |
198900.n |
198900be |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{12} \cdot 13 \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$8847360$ |
$2.852974$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$5.01552$ |
$[0, 0, 0, -15039300, 22435698625]$ |
\(y^2=x^3-15039300x+22435698625\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[ ]$ |
212160.cq1 |
212160cm1 |
212160.cq |
212160cm |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 13 \cdot 17^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$2.170186622$ |
$1$ |
|
$17$ |
$1474560$ |
$1.845524$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$4.00345$ |
$[0, -1, 0, -267365, 53270037]$ |
\(y^2=x^3-x^2-267365x+53270037\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[(4, 7225), (229, 2000)]$ |
212160.hb1 |
212160es1 |
212160.hb |
212160es |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 13 \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1474560$ |
$1.845524$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$4.00345$ |
$[0, 1, 0, -267365, -53270037]$ |
\(y^2=x^3+x^2-267365x-53270037\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[ ]$ |
225420.bi1 |
225420b1 |
225420.bi |
225420b |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{6} \cdot 13 \cdot 17^{10} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1560$ |
$48$ |
$0$ |
$3.233056811$ |
$1$ |
|
$15$ |
$13271040$ |
$2.915558$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$5.02552$ |
$[0, 1, 0, -19317145, -32666168632]$ |
\(y^2=x^3+x^2-19317145x-32666168632\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
$[(-2539, 4335), (-2569, 3375)]$ |
265200.cp1 |
265200cp1 |
265200.cp |
265200cp |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{12} \cdot 13 \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4423680$ |
$2.303669$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$4.37215$ |
$[0, -1, 0, -1671033, 831508812]$ |
\(y^2=x^3-x^2-1671033x+831508812\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[ ]$ |