Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
4335.e1 |
4335c2 |
4335.e |
4335c |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{9} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$352512$ |
$3.100842$ |
$17968412610002944/158203125$ |
$1.13557$ |
$7.85237$ |
$[0, -1, 1, -68932665, -220260749857]$ |
\(y^2+y=x^3-x^2-68932665x-220260749857\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 51.8.0-3.a.1.1, 510.16.0.? |
$[ ]$ |
4335.f1 |
4335e2 |
4335.f |
4335e |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{9} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$30$ |
$16$ |
$0$ |
$4.052307060$ |
$1$ |
|
$0$ |
$20736$ |
$1.684235$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.82248$ |
$[0, 1, 1, -238521, -44916415]$ |
\(y^2+y=x^3+x^2-238521x-44916415\) |
3.8.0-3.a.1.1, 10.2.0.a.1, 30.16.0-30.a.1.1 |
$[(-1131/2, 101/2)]$ |
13005.g1 |
13005g2 |
13005.g |
13005g |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 17^{2} \) |
\( 3^{10} \cdot 5^{9} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2820096$ |
$3.650146$ |
$17968412610002944/158203125$ |
$1.13557$ |
$7.63755$ |
$[0, 0, 1, -620393988, 5947660640119]$ |
\(y^2+y=x^3-620393988x+5947660640119\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 51.8.0-3.a.1.2, 510.16.0.? |
$[ ]$ |
13005.l1 |
13005o2 |
13005.l |
13005o |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 17^{2} \) |
\( 3^{10} \cdot 5^{9} \cdot 17^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$165888$ |
$2.233540$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.84307$ |
$[0, 0, 1, -2146692, 1210596507]$ |
\(y^2+y=x^3-2146692x+1210596507\) |
3.8.0-3.a.1.2, 10.2.0.a.1, 30.16.0-30.a.1.4 |
$[ ]$ |
21675.j1 |
21675j2 |
21675.j |
21675j |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{15} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$497664$ |
$2.488953$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.85110$ |
$[0, -1, 1, -5963033, -5602625782]$ |
\(y^2+y=x^3-x^2-5963033x-5602625782\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 10.2.0.a.1, 15.8.0-3.a.1.1, 30.16.0-30.a.1.2 |
$[ ]$ |
21675.p1 |
21675o2 |
21675.p |
21675o |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{15} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$8460288$ |
$3.905560$ |
$17968412610002944/158203125$ |
$1.13557$ |
$7.55377$ |
$[0, 1, 1, -1723316633, -27536040365356]$ |
\(y^2+y=x^3+x^2-1723316633x-27536040365356\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 102.8.0.?, 255.8.0.?, $\ldots$ |
$[ ]$ |
65025.be1 |
65025bx2 |
65025.be |
65025bx |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{10} \cdot 5^{15} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$4.249897828$ |
$1$ |
|
$0$ |
$3981312$ |
$3.038258$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.86586$ |
$[0, 0, 1, -53667300, 151324563406]$ |
\(y^2+y=x^3-53667300x+151324563406\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 10.2.0.a.1, 15.8.0-3.a.1.2, 30.16.0-30.a.1.3 |
$[(-19535/2, 4359371/2)]$ |
65025.bm1 |
65025bg2 |
65025.bm |
65025bg |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{10} \cdot 5^{15} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$67682304$ |
$4.454865$ |
$17968412610002944/158203125$ |
$1.13557$ |
$7.39974$ |
$[0, 0, 1, -15509849700, 743457580014906]$ |
\(y^2+y=x^3-15509849700x+743457580014906\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 102.8.0.?, 255.8.0.?, $\ldots$ |
$[ ]$ |
69360.i1 |
69360cl2 |
69360.i |
69360cl |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{9} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$5.522509981$ |
$1$ |
|
$0$ |
$1492992$ |
$2.377380$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.12045$ |
$[0, -1, 0, -3816341, 2870834205]$ |
\(y^2=x^3-x^2-3816341x+2870834205\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.2, 30.8.0.a.1, 60.16.0-30.a.1.4 |
$[(4445/2, 7785/2)]$ |
69360.ds1 |
69360ds2 |
69360.ds |
69360ds |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{9} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25380864$ |
$3.793987$ |
$17968412610002944/158203125$ |
$1.13557$ |
$6.64545$ |
$[0, 1, 0, -1102922645, 14097790913475]$ |
\(y^2=x^3+x^2-1102922645x+14097790913475\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 204.8.0.?, 1020.16.0.? |
$[ ]$ |
208080.da1 |
208080cu2 |
208080.da |
208080cu |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{10} \cdot 5^{9} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$245.6066084$ |
$1$ |
|
$0$ |
$203046912$ |
$4.343292$ |
$17968412610002944/158203125$ |
$1.13557$ |
$6.58755$ |
$[0, 0, 0, -9926303808, -380650280967632]$ |
\(y^2=x^3-9926303808x-380650280967632\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 204.8.0.?, 1020.16.0.? |
$[(-1195806370194318810793094000805550037303968384773368627332841243702005258978200124730406892888014946311481087/4557557774205780915318324463864946913714056045869657, 4729137780038763182732232791722849236753382867345097930594331648808278481810571925974202038311089011956824526202822601569547559989889999519217217483983853767385/4557557774205780915318324463864946913714056045869657)]$ |
208080.em1 |
208080i2 |
208080.em |
208080i |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{10} \cdot 5^{9} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1.556550415$ |
$1$ |
|
$2$ |
$11943936$ |
$2.926685$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.19936$ |
$[0, 0, 0, -34347072, -77478176464]$ |
\(y^2=x^3-34347072x-77478176464\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.1, 30.8.0.a.1, 60.16.0-30.a.1.1 |
$[(-3383, 765)]$ |
212415.bi1 |
212415bm2 |
212415.bi |
212415bm |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{9} \cdot 7^{6} \cdot 17^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$0.400544181$ |
$1$ |
|
$18$ |
$7464960$ |
$2.657188$ |
$17968412610002944/158203125$ |
$1.13557$ |
$4.92697$ |
$[0, -1, 1, -11687545, 15382955181]$ |
\(y^2+y=x^3-x^2-11687545x+15382955181\) |
3.4.0.a.1, 10.2.0.a.1, 21.8.0-3.a.1.2, 30.8.0.a.1, 210.16.0.? |
$[(1315, 47812), (9085/2, 187421/2)]$ |
212415.bo1 |
212415bh2 |
212415.bo |
212415bh |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{9} \cdot 7^{6} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3570$ |
$16$ |
$0$ |
$16.56735005$ |
$1$ |
|
$0$ |
$126904320$ |
$4.073799$ |
$17968412610002944/158203125$ |
$1.13557$ |
$6.31282$ |
$[0, 1, 1, -3377700601, 75556192602055]$ |
\(y^2+y=x^3+x^2-3377700601x+75556192602055\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 357.8.0.?, 3570.16.0.? |
$[(748319989/150, 305349550237/150)]$ |
277440.bw1 |
277440bw2 |
277440.bw |
277440bw |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{9} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$50761728$ |
$3.447414$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.57858$ |
$[0, -1, 0, -275730661, 1762361729515]$ |
\(y^2=x^3-x^2-275730661x+1762361729515\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 408.8.0.?, 2040.16.0.? |
$[ ]$ |
277440.eh1 |
277440eh2 |
277440.eh |
277440eh |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{9} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$3.413392004$ |
$1$ |
|
$2$ |
$2985984$ |
$2.030807$ |
$17968412610002944/158203125$ |
$1.13557$ |
$4.22226$ |
$[0, -1, 0, -954085, -358377233]$ |
\(y^2=x^3-x^2-954085x-358377233\) |
3.4.0.a.1, 10.2.0.a.1, 24.8.0-3.a.1.1, 30.8.0.a.1, 120.16.0.? |
$[(1714, 55125)]$ |
277440.fj1 |
277440fj2 |
277440.fj |
277440fj |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{9} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$50761728$ |
$3.447414$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.57858$ |
$[0, 1, 0, -275730661, -1762361729515]$ |
\(y^2=x^3+x^2-275730661x-1762361729515\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 408.8.0.?, 2040.16.0.? |
$[ ]$ |
277440.ht1 |
277440ht2 |
277440.ht |
277440ht |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{9} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.627447554$ |
$1$ |
|
$4$ |
$2985984$ |
$2.030807$ |
$17968412610002944/158203125$ |
$1.13557$ |
$4.22226$ |
$[0, 1, 0, -954085, 358377233]$ |
\(y^2=x^3+x^2-954085x+358377233\) |
3.4.0.a.1, 10.2.0.a.1, 24.8.0-3.a.1.3, 30.8.0.a.1, 120.16.0.? |
$[(536, 1125)]$ |
346800.bl1 |
346800bl2 |
346800.bl |
346800bl |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{15} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$609140736$ |
$4.598709$ |
$17968412610002944/158203125$ |
$1.13557$ |
$6.56402$ |
$[0, -1, 0, -27573066133, 1762279010316637]$ |
\(y^2=x^3-x^2-27573066133x+1762279010316637\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 204.8.0.?, 1020.16.0.? |
$[ ]$ |
346800.ki1 |
346800ki2 |
346800.ki |
346800ki |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{15} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$35831808$ |
$3.182098$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.23142$ |
$[0, 1, 0, -95408533, 358663458563]$ |
\(y^2=x^3+x^2-95408533x+358663458563\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.4, 30.8.0.a.1, 60.16.0-30.a.1.3 |
$[ ]$ |