Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
18176.e2 |
18176r2 |
18176.e |
18176r |
$3$ |
$25$ |
\( 2^{8} \cdot 71 \) |
\( 2^{9} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$28400$ |
$1200$ |
$37$ |
$0.427635389$ |
$1$ |
|
$2$ |
$14720$ |
$1.031223$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.74457$ |
$[0, -1, 0, -4319, 100435]$ |
\(y^2=x^3-x^2-4319x+100435\) |
5.30.0.a.1, 40.60.0.b.1, 80.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(26, 71)]$ |
18176.g2 |
18176c2 |
18176.g |
18176c |
$3$ |
$25$ |
\( 2^{8} \cdot 71 \) |
\( 2^{15} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$28400$ |
$1200$ |
$37$ |
$4.566301900$ |
$1$ |
|
$2$ |
$29440$ |
$1.377798$ |
$17406197775296/1804229351$ |
$0.95568$ |
$4.16860$ |
$[0, -1, 0, -17277, -786203]$ |
\(y^2=x^3-x^2-17277x-786203\) |
5.30.0.a.1, 40.60.0.b.1, 80.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(-92, 127)]$ |
18176.n2 |
18176b2 |
18176.n |
18176b |
$3$ |
$25$ |
\( 2^{8} \cdot 71 \) |
\( 2^{9} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$28400$ |
$1200$ |
$37$ |
$3.458040121$ |
$1$ |
|
$2$ |
$14720$ |
$1.031223$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.74457$ |
$[0, 1, 0, -4319, -100435]$ |
\(y^2=x^3+x^2-4319x-100435\) |
5.30.0.a.1, 40.60.0.b.1, 80.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(-31, 68)]$ |
18176.p2 |
18176q2 |
18176.p |
18176q |
$3$ |
$25$ |
\( 2^{8} \cdot 71 \) |
\( 2^{15} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$28400$ |
$1200$ |
$37$ |
$1.193735532$ |
$1$ |
|
$0$ |
$29440$ |
$1.377798$ |
$17406197775296/1804229351$ |
$0.95568$ |
$4.16860$ |
$[0, 1, 0, -17277, 786203]$ |
\(y^2=x^3+x^2-17277x+786203\) |
5.30.0.a.1, 40.60.0.b.1, 80.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(1453/3, 40328/3)]$ |
163584.d2 |
163584x2 |
163584.d |
163584x |
$3$ |
$25$ |
\( 2^{8} \cdot 3^{2} \cdot 71 \) |
\( 2^{15} \cdot 3^{6} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$85200$ |
$1200$ |
$37$ |
$1.273918744$ |
$1$ |
|
$2$ |
$883200$ |
$1.927103$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.95472$ |
$[0, 0, 0, -155496, 21382976]$ |
\(y^2=x^3-155496x+21382976\) |
5.30.0.a.1, 40.60.0.b.1, 240.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(296, 1136)]$ |
163584.h2 |
163584b2 |
163584.h |
163584b |
$3$ |
$25$ |
\( 2^{8} \cdot 3^{2} \cdot 71 \) |
\( 2^{15} \cdot 3^{6} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$85200$ |
$1200$ |
$37$ |
$13.36899596$ |
$1$ |
|
$0$ |
$883200$ |
$1.927103$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.95472$ |
$[0, 0, 0, -155496, -21382976]$ |
\(y^2=x^3-155496x-21382976\) |
5.30.0.a.1, 40.60.0.b.1, 240.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(-407991/49, 42939833/49)]$ |
163584.bf2 |
163584bm2 |
163584.bf |
163584bm |
$3$ |
$25$ |
\( 2^{8} \cdot 3^{2} \cdot 71 \) |
\( 2^{9} \cdot 3^{6} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$85200$ |
$1200$ |
$37$ |
$1.512175207$ |
$1$ |
|
$2$ |
$441600$ |
$1.580530$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.60829$ |
$[0, 0, 0, -38874, 2672872]$ |
\(y^2=x^3-38874x+2672872\) |
5.30.0.a.1, 40.60.0.b.1, 240.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(6, 1562)]$ |
163584.bl2 |
163584r2 |
163584.bl |
163584r |
$3$ |
$25$ |
\( 2^{8} \cdot 3^{2} \cdot 71 \) |
\( 2^{9} \cdot 3^{6} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$85200$ |
$1200$ |
$37$ |
$15.71874986$ |
$1$ |
|
$0$ |
$441600$ |
$1.580530$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.60829$ |
$[0, 0, 0, -38874, -2672872]$ |
\(y^2=x^3-38874x-2672872\) |
5.30.0.a.1, 40.60.0.b.1, 240.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(9436564/21, 28986937804/21)]$ |
454400.m2 |
454400m2 |
454400.m |
454400m |
$3$ |
$25$ |
\( 2^{8} \cdot 5^{2} \cdot 71 \) |
\( 2^{15} \cdot 5^{6} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$28400$ |
$1200$ |
$37$ |
$0.797742574$ |
$1$ |
|
$2$ |
$3768320$ |
$2.182514$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.87984$ |
$[0, -1, 0, -431933, 99139237]$ |
\(y^2=x^3-x^2-431933x+99139237\) |
5.30.0.a.1, 40.60.0.b.1, 80.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(-453, 14200)]$ |
454400.u2 |
454400u2 |
454400.u |
454400u |
$3$ |
$25$ |
\( 2^{8} \cdot 5^{2} \cdot 71 \) |
\( 2^{9} \cdot 5^{6} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$28400$ |
$1200$ |
$37$ |
$7.754732272$ |
$1$ |
|
$0$ |
$1884160$ |
$1.835943$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.56059$ |
$[0, -1, 0, -107983, -12338413]$ |
\(y^2=x^3-x^2-107983x-12338413\) |
5.30.0.a.1, 40.60.0.b.1, 80.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(-10702/7, 302875/7)]$ |
454400.bb2 |
454400bb2 |
454400.bb |
454400bb |
$3$ |
$25$ |
\( 2^{8} \cdot 5^{2} \cdot 71 \) |
\( 2^{9} \cdot 5^{6} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$28400$ |
$1200$ |
$37$ |
$0.953846594$ |
$1$ |
|
$2$ |
$1884160$ |
$1.835943$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.56059$ |
$[0, 1, 0, -107983, 12338413]$ |
\(y^2=x^3+x^2-107983x+12338413\) |
5.30.0.a.1, 40.60.0.b.1, 80.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(-156, 5041)]$ |
454400.bj2 |
454400bj2 |
454400.bj |
454400bj |
$3$ |
$25$ |
\( 2^{8} \cdot 5^{2} \cdot 71 \) |
\( 2^{15} \cdot 5^{6} \cdot 71^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.30.0.1 |
5Cs |
$28400$ |
$1200$ |
$37$ |
$15.89933783$ |
$1$ |
|
$0$ |
$3768320$ |
$2.182514$ |
$17406197775296/1804229351$ |
$0.95568$ |
$3.87984$ |
$[0, 1, 0, -431933, -99139237]$ |
\(y^2=x^3+x^2-431933x-99139237\) |
5.30.0.a.1, 40.60.0.b.1, 80.120.0.?, 568.2.0.?, 1420.60.2.?, $\ldots$ |
$[(-22150939/217, 4258422568/217)]$ |