| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 35490.bc1 |
35490z1 |
35490.bc |
35490z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{4} \cdot 7^{3} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2306304$ |
$2.764595$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$5.52778$ |
$[1, 0, 1, -5043809, 4146443732]$ |
\(y^2+xy+y=x^3-5043809x+4146443732\) |
168.2.0.? |
$[ ]$ |
| 35490.dt1 |
35490dt1 |
35490.dt |
35490dt |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{4} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$0.021773998$ |
$1$ |
|
$22$ |
$177408$ |
$1.482121$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$4.05888$ |
$[1, 0, 0, -29845, 1885025]$ |
\(y^2+xy=x^3-29845x+1885025\) |
168.2.0.? |
$[(-130, 1955)]$ |
| 106470.bn1 |
106470bq1 |
106470.bn |
106470bq |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( 2^{11} \cdot 3^{13} \cdot 5^{4} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1.760158795$ |
$1$ |
|
$4$ |
$1419264$ |
$2.031425$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$4.24311$ |
$[1, -1, 0, -268605, -50895675]$ |
\(y^2+xy=x^3-x^2-268605x-50895675\) |
168.2.0.? |
$[(-345, 960)]$ |
| 106470.ey1 |
106470fg1 |
106470.ey |
106470fg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( 2^{11} \cdot 3^{13} \cdot 5^{4} \cdot 7^{3} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18450432$ |
$3.313900$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$5.57260$ |
$[1, -1, 1, -45394277, -111953980771]$ |
\(y^2+xy+y=x^3-x^2-45394277x-111953980771\) |
168.2.0.? |
$[ ]$ |
| 177450.i1 |
177450jt1 |
177450.i |
177450jt |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{10} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$4.610306893$ |
$1$ |
|
$2$ |
$4257792$ |
$2.286839$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$4.31736$ |
$[1, 1, 0, -746125, 235628125]$ |
\(y^2+xy=x^3+x^2-746125x+235628125\) |
168.2.0.? |
$[(405, 85)]$ |
| 177450.hq1 |
177450eb1 |
177450.hq |
177450eb |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{10} \cdot 7^{3} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$0.829734191$ |
$1$ |
|
$6$ |
$55351296$ |
$3.569313$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$5.59066$ |
$[1, 1, 1, -126095213, 518305466531]$ |
\(y^2+xy+y=x^3+x^2-126095213x+518305466531\) |
168.2.0.? |
$[(4295, 234452)]$ |
| 248430.ck1 |
248430ck1 |
248430.ck |
248430ck |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{4} \cdot 7^{9} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$2.487832725$ |
$1$ |
|
$0$ |
$110702592$ |
$3.737549$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$5.60175$ |
$[1, 1, 0, -247146617, -1422477346779]$ |
\(y^2+xy=x^3+x^2-247146617x-1422477346779\) |
168.2.0.? |
$[(-32337/2, 1771347/2)]$ |
| 248430.fp1 |
248430fp1 |
248430.fp |
248430fp |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{4} \cdot 7^{9} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1.503427714$ |
$1$ |
|
$4$ |
$8515584$ |
$2.455074$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$4.36294$ |
$[1, 1, 1, -1462406, -648025981]$ |
\(y^2+xy+y=x^3+x^2-1462406x-648025981\) |
168.2.0.? |
$[(-631, 5215)]$ |
| 283920.be1 |
283920be1 |
283920.be |
283920be |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( 2^{23} \cdot 3^{7} \cdot 5^{4} \cdot 7^{3} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$5.672196097$ |
$1$ |
|
$2$ |
$55351296$ |
$3.457741$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$5.27477$ |
$[0, -1, 0, -80700936, -265372398864]$ |
\(y^2=x^3-x^2-80700936x-265372398864\) |
168.2.0.? |
$[(-4759, 104300)]$ |
| 283920.cs1 |
283920cs1 |
283920.cs |
283920cs |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( 2^{23} \cdot 3^{7} \cdot 5^{4} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$2.705122330$ |
$1$ |
|
$2$ |
$4257792$ |
$2.175266$ |
$17396130889999849/960180480000$ |
$0.97971$ |
$4.04913$ |
$[0, -1, 0, -477520, -120641600]$ |
\(y^2=x^3-x^2-477520x-120641600\) |
168.2.0.? |
$[(-328, 768)]$ |