| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 2220.c2 |
2220c2 |
2220.c |
2220c |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 37 \) |
\( - 2^{8} \cdot 3 \cdot 5^{15} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1110$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$9720$ |
$1.550894$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$5.38582$ |
$[0, 1, 0, 15899, -1182985]$ |
\(y^2=x^3+x^2+15899x-1182985\) |
3.8.0-3.a.1.1, 1110.16.0.? |
$[ ]$ |
$1$ |
| 6660.e2 |
6660f2 |
6660.e |
6660f |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 37 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{15} \cdot 37 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1110$ |
$16$ |
$0$ |
$1.149121569$ |
$1$ |
|
$10$ |
$77760$ |
$2.100201$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$5.46247$ |
$[0, 0, 0, 143088, 32083684]$ |
\(y^2=x^3+143088x+32083684\) |
3.8.0-3.a.1.2, 1110.16.0.? |
$[(-52, 4950)]$ |
$1$ |
| 8880.c2 |
8880p2 |
8880.c |
8880p |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 37 \) |
\( - 2^{8} \cdot 3 \cdot 5^{15} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2220$ |
$16$ |
$0$ |
$4.447045485$ |
$1$ |
|
$2$ |
$38880$ |
$1.550894$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.56459$ |
$[0, -1, 0, 15899, 1182985]$ |
\(y^2=x^3-x^2+15899x+1182985\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 1110.8.0.?, 2220.16.0.? |
$[(-15, 970)]$ |
$1$ |
| 11100.b2 |
11100b2 |
11100.b |
11100b |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3 \cdot 5^{21} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1110$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$233280$ |
$2.355614$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$5.49194$ |
$[0, -1, 0, 397467, -148668063]$ |
\(y^2=x^3-x^2+397467x-148668063\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 222.8.0.?, 1110.16.0.? |
$[ ]$ |
$1$ |
| 26640.bg2 |
26640cd2 |
26640.bg |
26640cd |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 37 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{15} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2220$ |
$16$ |
$0$ |
$0.576005316$ |
$1$ |
|
$4$ |
$311040$ |
$2.100201$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.71934$ |
$[0, 0, 0, 143088, -32083684]$ |
\(y^2=x^3+143088x-32083684\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 1110.8.0.?, 2220.16.0.? |
$[(202, 2250)]$ |
$1$ |
| 33300.i2 |
33300i2 |
33300.i |
33300i |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{21} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1110$ |
$16$ |
$0$ |
$7.870747831$ |
$1$ |
|
$0$ |
$1866240$ |
$2.904919$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$5.54554$ |
$[0, 0, 0, 3577200, 4010460500]$ |
\(y^2=x^3+3577200x+4010460500\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 222.8.0.?, 1110.16.0.? |
$[(-1641715/47, 3185546875/47)]$ |
$1$ |
| 35520.bj2 |
35520n2 |
35520.bj |
35520n |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 37 \) |
\( - 2^{14} \cdot 3 \cdot 5^{15} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4440$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$311040$ |
$1.897469$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.35758$ |
$[0, -1, 0, 63595, -9527475]$ |
\(y^2=x^3-x^2+63595x-9527475\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 1110.8.0.?, 4440.16.0.? |
$[ ]$ |
$1$ |
| 35520.cn2 |
35520cw2 |
35520.cn |
35520cw |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 37 \) |
\( - 2^{14} \cdot 3 \cdot 5^{15} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4440$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$311040$ |
$1.897469$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.35758$ |
$[0, 1, 0, 63595, 9527475]$ |
\(y^2=x^3+x^2+63595x+9527475\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 1110.8.0.?, 4440.16.0.? |
$[ ]$ |
$1$ |
| 44400.dc2 |
44400ci2 |
44400.dc |
44400ci |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3 \cdot 5^{21} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2220$ |
$16$ |
$0$ |
$13.00151382$ |
$1$ |
|
$0$ |
$933120$ |
$2.355614$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.78047$ |
$[0, 1, 0, 397467, 148668063]$ |
\(y^2=x^3+x^2+397467x+148668063\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 444.8.0.?, 1110.8.0.?, 2220.16.0.? |
$[(3292223/49, 6731332350/49)]$ |
$1$ |
| 82140.k2 |
82140i2 |
82140.k |
82140i |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 37^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{15} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1110$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13296960$ |
$3.356354$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$5.58180$ |
$[0, 1, 0, 21765275, -60182924377]$ |
\(y^2=x^3+x^2+21765275x-60182924377\) |
3.4.0.a.1, 30.8.0-3.a.1.1, 111.8.0.?, 1110.16.0.? |
$[ ]$ |
$1$ |
| 106560.y2 |
106560ej2 |
106560.y |
106560ej |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 37 \) |
\( - 2^{14} \cdot 3^{7} \cdot 5^{15} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4440$ |
$16$ |
$0$ |
$12.08295758$ |
$1$ |
|
$0$ |
$2488320$ |
$2.446774$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.51345$ |
$[0, 0, 0, 572352, -256669472]$ |
\(y^2=x^3+572352x-256669472\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 1110.8.0.?, 4440.16.0.? |
$[(331121/25, 218337831/25)]$ |
$1$ |
| 106560.cq2 |
106560bi2 |
106560.cq |
106560bi |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 37 \) |
\( - 2^{14} \cdot 3^{7} \cdot 5^{15} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4440$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$2.446774$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.51345$ |
$[0, 0, 0, 572352, 256669472]$ |
\(y^2=x^3+572352x+256669472\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 1110.8.0.?, 4440.16.0.? |
$[ ]$ |
$1$ |
| 108780.t2 |
108780t2 |
108780.t |
108780t |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3 \cdot 5^{15} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7770$ |
$16$ |
$0$ |
$1.508621266$ |
$1$ |
|
$0$ |
$3499200$ |
$2.523849$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.58517$ |
$[0, -1, 0, 779035, 407321937]$ |
\(y^2=x^3-x^2+779035x+407321937\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 1110.8.0.?, 7770.16.0.? |
$[(7741/2, 765625/2)]$ |
$1$ |
| 133200.fd2 |
133200dc2 |
133200.fd |
133200dc |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{21} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2220$ |
$16$ |
$0$ |
$4.094696456$ |
$1$ |
|
$0$ |
$7464960$ |
$2.904919$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.89402$ |
$[0, 0, 0, 3577200, -4010460500]$ |
\(y^2=x^3+3577200x-4010460500\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 444.8.0.?, 1110.8.0.?, 2220.16.0.? |
$[(441365/7, 298828125/7)]$ |
$1$ |
| 177600.dv2 |
177600ef2 |
177600.dv |
177600ef |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{14} \cdot 3 \cdot 5^{21} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4440$ |
$16$ |
$0$ |
$16.88342758$ |
$1$ |
|
$0$ |
$7464960$ |
$2.702187$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.57627$ |
$[0, -1, 0, 1589867, 1187754637]$ |
\(y^2=x^3-x^2+1589867x+1187754637\) |
3.4.0.a.1, 120.8.0.?, 888.8.0.?, 1110.8.0.?, 4440.16.0.? |
$[(15373344892/4689, 5297915177734375/4689)]$ |
$1$ |
| 177600.fs2 |
177600fv2 |
177600.fs |
177600fv |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{14} \cdot 3 \cdot 5^{21} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4440$ |
$16$ |
$0$ |
$2.361382214$ |
$9$ |
$3$ |
$0$ |
$7464960$ |
$2.702187$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.57627$ |
$[0, 1, 0, 1589867, -1187754637]$ |
\(y^2=x^3+x^2+1589867x-1187754637\) |
3.4.0.a.1, 120.8.0.?, 888.8.0.?, 1110.8.0.?, 4440.16.0.? |
$[(14182/3, 1953125/3)]$ |
$1$ |
| 246420.k2 |
246420k2 |
246420.k |
246420k |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 37^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{15} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1110$ |
$16$ |
$0$ |
$32.51283982$ |
$1$ |
|
$0$ |
$106375680$ |
$3.905659$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$5.61881$ |
$[0, 0, 0, 195887472, 1625134845652]$ |
\(y^2=x^3+195887472x+1625134845652\) |
3.4.0.a.1, 30.8.0-3.a.1.2, 111.8.0.?, 1110.16.0.? |
$[(386445892723229/112895, 8565832505267333620317/112895)]$ |
$1$ |
| 268620.y2 |
268620y2 |
268620.y |
268620y |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3 \cdot 5^{15} \cdot 11^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12210$ |
$16$ |
$0$ |
$11.36938498$ |
$1$ |
|
$0$ |
$13996800$ |
$2.749844$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.47055$ |
$[0, 1, 0, 1923739, 1582248039]$ |
\(y^2=x^3+x^2+1923739x+1582248039\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 1110.8.0.?, 12210.16.0.? |
$[(881986/9, 835543115/9)]$ |
$1$ |
| 326340.ba2 |
326340ba2 |
326340.ba |
326340ba |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{15} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7770$ |
$16$ |
$0$ |
$12.52334003$ |
$1$ |
|
$0$ |
$27993600$ |
$3.073154$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.70761$ |
$[0, 0, 0, 7011312, -11004703612]$ |
\(y^2=x^3+7011312x-11004703612\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 1110.8.0.?, 7770.16.0.? |
$[(3592057/34, 7937468595/34)]$ |
$1$ |
| 328560.v2 |
328560v2 |
328560.v |
328560v |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 37^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{15} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2220$ |
$16$ |
$0$ |
$2.023273502$ |
$1$ |
|
$4$ |
$53187840$ |
$3.356354$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.97263$ |
$[0, -1, 0, 21765275, 60182924377]$ |
\(y^2=x^3-x^2+21765275x+60182924377\) |
3.4.0.a.1, 60.8.0-3.a.1.4, 444.8.0.?, 1110.8.0.?, 2220.16.0.? |
$[(-1491, 156250)]$ |
$1$ |
| 375180.w2 |
375180w2 |
375180.w |
375180w |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3 \cdot 5^{15} \cdot 13^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14430$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22744800$ |
$2.833370$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.43227$ |
$[0, 1, 0, 2686875, -2609765625]$ |
\(y^2=x^3+x^2+2686875x-2609765625\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 1110.8.0.?, 14430.16.0.? |
$[ ]$ |
$1$ |
| 410700.d2 |
410700d2 |
410700.d |
410700d |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 37^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{21} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1110$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$319127040$ |
$4.161072$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$5.63388$ |
$[0, -1, 0, 544131867, -7523953810863]$ |
\(y^2=x^3-x^2+544131867x-7523953810863\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 555.8.0.?, 1110.16.0.? |
$[ ]$ |
$1$ |
| 435120.hr2 |
435120hr2 |
435120.hr |
435120hr |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3 \cdot 5^{15} \cdot 7^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$15540$ |
$16$ |
$0$ |
$3.631737017$ |
$1$ |
|
$4$ |
$13996800$ |
$2.523849$ |
$1736064508952576/3387451171875$ |
$1.04003$ |
$4.09559$ |
$[0, 1, 0, 779035, -407321937]$ |
\(y^2=x^3+x^2+779035x-407321937\) |
3.4.0.a.1, 84.8.0.?, 1110.8.0.?, 15540.16.0.? |
$[(1971, 93750), (34651/9, 1531250/9)]$ |
$1$ |