| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 13260.h1 |
13260h1 |
13260.h |
13260h |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5 \cdot 13^{2} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10080$ |
$0.648133$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.26038$ |
$[0, -1, 0, 630, 405]$ |
\(y^2=x^3-x^2+630x+405\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 39780.k1 |
39780q1 |
39780.k |
39780q |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5 \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.225230263$ |
$1$ |
|
$8$ |
$80640$ |
$1.197439$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.54456$ |
$[0, 0, 0, 5667, -16603]$ |
\(y^2=x^3+5667x-16603\) |
510.2.0.? |
$[(109, 1377)]$ |
$1$ |
| 53040.cl1 |
53040cy1 |
53040.cl |
53040cy |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5 \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.110811137$ |
$1$ |
|
$2$ |
$40320$ |
$0.648133$ |
$1725582942464/1008810855$ |
$0.92200$ |
$2.84491$ |
$[0, 1, 0, 630, -405]$ |
\(y^2=x^3+x^2+630x-405\) |
510.2.0.? |
$[(3, 39)]$ |
$1$ |
| 66300.w1 |
66300x1 |
66300.w |
66300x |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 13^{2} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.091279997$ |
$1$ |
|
$36$ |
$241920$ |
$1.452852$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.65754$ |
$[0, 1, 0, 15742, 82113]$ |
\(y^2=x^3+x^2+15742x+82113\) |
510.2.0.? |
$[(1348, 49725), (73, 1275)]$ |
$1$ |
| 159120.j1 |
159120bg1 |
159120.j |
159120bg |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5 \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.981338450$ |
$1$ |
|
$2$ |
$322560$ |
$1.197439$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.13430$ |
$[0, 0, 0, 5667, 16603]$ |
\(y^2=x^3+5667x+16603\) |
510.2.0.? |
$[(146, 1989)]$ |
$1$ |
| 172380.c1 |
172380bd1 |
172380.c |
172380bd |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5 \cdot 13^{8} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1693440$ |
$1.930609$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.84317$ |
$[0, -1, 0, 106414, 1315521]$ |
\(y^2=x^3-x^2+106414x+1315521\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 198900.l1 |
198900bb1 |
198900.l |
198900bb |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{7} \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$4.662739711$ |
$1$ |
|
$2$ |
$1935360$ |
$2.002159$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.86847$ |
$[0, 0, 0, 141675, -2075375]$ |
\(y^2=x^3+141675x-2075375\) |
510.2.0.? |
$[(24, 1157)]$ |
$1$ |
| 212160.i1 |
212160dh1 |
212160.i |
212160dh |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5 \cdot 13^{2} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$322560$ |
$0.994707$ |
$1725582942464/1008810855$ |
$0.92200$ |
$2.86244$ |
$[0, -1, 0, 2519, -5759]$ |
\(y^2=x^3-x^2+2519x-5759\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 212160.fm1 |
212160fy1 |
212160.fm |
212160fy |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5 \cdot 13^{2} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$322560$ |
$0.994707$ |
$1725582942464/1008810855$ |
$0.92200$ |
$2.86244$ |
$[0, 1, 0, 2519, 5759]$ |
\(y^2=x^3+x^2+2519x+5759\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 225420.x1 |
225420l1 |
225420.x |
225420l |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5 \cdot 13^{2} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2903040$ |
$2.064739$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.89011$ |
$[0, 1, 0, 181974, 3081789]$ |
\(y^2=x^3+x^2+181974x+3081789\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 265200.dh1 |
265200dh1 |
265200.dh |
265200dh |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.153241738$ |
$1$ |
|
$0$ |
$967680$ |
$1.452852$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.25152$ |
$[0, -1, 0, 15742, -82113]$ |
\(y^2=x^3-x^2+15742x-82113\) |
510.2.0.? |
$[(133/2, 5525/2)]$ |
$1$ |