| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 3315.c2 |
3315f2 |
3315.c |
3315f |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$0.582412249$ |
$1$ |
|
$8$ |
$640$ |
$0.032832$ |
$1723683599/10989225$ |
$0.85519$ |
$2.90789$ |
$[1, 0, 0, 25, -150]$ |
\(y^2+xy=x^3+25x-150\) |
2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 4420.12.0.?, 8840.24.0.?, $\ldots$ |
$[(7, 16)]$ |
| 9945.g2 |
9945e2 |
9945.g |
9945e |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$8840$ |
$48$ |
$0$ |
$1.150311033$ |
$1$ |
|
$4$ |
$5120$ |
$0.582138$ |
$1723683599/10989225$ |
$0.85519$ |
$3.27694$ |
$[1, -1, 0, 225, 4050]$ |
\(y^2+xy=x^3-x^2+225x+4050\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 4420.12.0.?, 8840.48.0.? |
$[(10, 80)]$ |
| 16575.h2 |
16575c2 |
16575.h |
16575c |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 5^{8} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1.283347749$ |
$1$ |
|
$4$ |
$15360$ |
$0.837551$ |
$1723683599/10989225$ |
$0.85519$ |
$3.42011$ |
$[1, 1, 0, 625, -18750]$ |
\(y^2+xy=x^3+x^2+625x-18750\) |
2.3.0.a.1, 4.6.0.a.1, 120.12.0.?, 4420.12.0.?, 5304.12.0.?, $\ldots$ |
$[(50, 350)]$ |
| 43095.o2 |
43095k2 |
43095.o |
43095k |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 3^{2} \cdot 5^{2} \cdot 13^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$107520$ |
$1.315308$ |
$1723683599/10989225$ |
$0.85519$ |
$3.65112$ |
$[1, 0, 1, 4221, -333773]$ |
\(y^2+xy+y=x^3+4221x-333773\) |
2.3.0.a.1, 4.6.0.a.1, 312.12.0.?, 2040.12.0.?, 4420.12.0.?, $\ldots$ |
$[ ]$ |
| 49725.h2 |
49725m2 |
49725.h |
49725m |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 5^{8} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1.206920805$ |
$1$ |
|
$6$ |
$122880$ |
$1.386858$ |
$1723683599/10989225$ |
$0.85519$ |
$3.68220$ |
$[1, -1, 1, 5620, 511872]$ |
\(y^2+xy+y=x^3-x^2+5620x+511872\) |
2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.1, 1768.12.0.?, 4420.12.0.?, $\ldots$ |
$[(24, 800)]$ |
| 53040.bd2 |
53040br2 |
53040.bd |
53040br |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$0.884196138$ |
$1$ |
|
$9$ |
$40960$ |
$0.725980$ |
$1723683599/10989225$ |
$0.85519$ |
$2.93137$ |
$[0, -1, 0, 400, 9600]$ |
\(y^2=x^3-x^2+400x+9600\) |
2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 4420.12.0.?, 8840.24.0.?, $\ldots$ |
$[(2, 102)]$ |
| 56355.c2 |
56355a2 |
56355.c |
56355a |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 3^{2} \cdot 5^{2} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1.434543088$ |
$1$ |
|
$6$ |
$184320$ |
$1.449438$ |
$1723683599/10989225$ |
$0.85519$ |
$3.70872$ |
$[1, 1, 1, 7219, -744172]$ |
\(y^2+xy+y=x^3+x^2+7219x-744172\) |
2.3.0.a.1, 4.6.0.a.1, 408.12.0.?, 1560.12.0.?, 4420.12.0.?, $\ldots$ |
$[(86, 679)]$ |
| 129285.h2 |
129285be2 |
129285.h |
129285be |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 3^{8} \cdot 5^{2} \cdot 13^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$860160$ |
$1.864613$ |
$1723683599/10989225$ |
$0.85519$ |
$3.87037$ |
$[1, -1, 1, 37993, 9011864]$ |
\(y^2+xy+y=x^3-x^2+37993x+9011864\) |
2.3.0.a.1, 4.6.0.a.1, 104.12.0.?, 680.12.0.?, 4420.12.0.?, $\ldots$ |
$[ ]$ |
| 159120.bq2 |
159120by2 |
159120.bq |
159120by |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{8} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$327680$ |
$1.275286$ |
$1723683599/10989225$ |
$0.85519$ |
$3.21283$ |
$[0, 0, 0, 3597, -262798]$ |
\(y^2=x^3+3597x-262798\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 4420.12.0.?, 8840.48.0.? |
$[ ]$ |
| 162435.q2 |
162435y2 |
162435.q |
162435y |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$185640$ |
$48$ |
$0$ |
$1.366752134$ |
$1$ |
|
$22$ |
$230400$ |
$1.005787$ |
$1723683599/10989225$ |
$0.85519$ |
$2.93777$ |
$[1, 1, 1, 1224, 52674]$ |
\(y^2+xy+y=x^3+x^2+1224x+52674\) |
2.3.0.a.1, 4.6.0.a.1, 168.12.0.?, 4420.12.0.?, 8840.24.0.?, $\ldots$ |
$[(34, 350), (-11, 200)]$ |
| 169065.bk2 |
169065z2 |
169065.bk |
169065z |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 3^{8} \cdot 5^{2} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$5.388454883$ |
$1$ |
|
$2$ |
$1474560$ |
$1.998745$ |
$1723683599/10989225$ |
$0.85519$ |
$3.91783$ |
$[1, -1, 0, 64971, 20157610]$ |
\(y^2+xy=x^3-x^2+64971x+20157610\) |
2.3.0.a.1, 4.6.0.a.1, 136.12.0.?, 520.12.0.?, 4420.12.0.?, $\ldots$ |
$[(2174, 101054)]$ |
| 212160.o2 |
212160hf2 |
212160.o |
212160hf |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{18} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1.660514625$ |
$1$ |
|
$23$ |
$327680$ |
$1.072554$ |
$1723683599/10989225$ |
$0.85519$ |
$2.93912$ |
$[0, -1, 0, 1599, -78399]$ |
\(y^2=x^3-x^2+1599x-78399\) |
2.3.0.a.1, 4.6.0.a.1, 12.12.0-4.a.1.1, 4420.12.0.?, 8840.24.0.?, $\ldots$ |
$[(65, 544), (33, 96)]$ |
| 212160.fi2 |
212160bt2 |
212160.fi |
212160bt |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{18} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$327680$ |
$1.072554$ |
$1723683599/10989225$ |
$0.85519$ |
$2.93912$ |
$[0, 1, 0, 1599, 78399]$ |
\(y^2=x^3+x^2+1599x+78399\) |
2.3.0.a.1, 4.6.0.a.1, 12.12.0-4.a.1.1, 4420.12.0.?, 8840.24.0.?, $\ldots$ |
$[ ]$ |
| 215475.l2 |
215475t2 |
215475.l |
215475t |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 3^{2} \cdot 5^{8} \cdot 13^{8} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$3.019778919$ |
$1$ |
|
$14$ |
$2580480$ |
$2.120026$ |
$1723683599/10989225$ |
$0.85519$ |
$3.95895$ |
$[1, 1, 1, 105537, -41721594]$ |
\(y^2+xy+y=x^3+x^2+105537x-41721594\) |
2.3.0.a.1, 4.6.0.a.1, 408.12.0.?, 1560.12.0.?, 4420.12.0.?, $\ldots$ |
$[(304, 4157), (355, 6197)]$ |
| 265200.eu2 |
265200eu2 |
265200.eu |
265200eu |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{2} \cdot 5^{8} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1.455139037$ |
$1$ |
|
$7$ |
$983040$ |
$1.530699$ |
$1723683599/10989225$ |
$0.85519$ |
$3.32684$ |
$[0, 1, 0, 9992, 1219988]$ |
\(y^2=x^3+x^2+9992x+1219988\) |
2.3.0.a.1, 4.6.0.a.1, 120.12.0.?, 4420.12.0.?, 5304.12.0.?, $\ldots$ |
$[(-52, 750)]$ |
| 281775.bv2 |
281775bv2 |
281775.bv |
281775bv |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{2} \cdot 5^{8} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$5.507540529$ |
$1$ |
|
$0$ |
$4423680$ |
$2.254158$ |
$1723683599/10989225$ |
$0.85519$ |
$4.00258$ |
$[1, 0, 1, 180474, -93382427]$ |
\(y^2+xy+y=x^3+180474x-93382427\) |
2.3.0.a.1, 4.6.0.a.1, 312.12.0.?, 2040.12.0.?, 4420.12.0.?, $\ldots$ |
$[(6913/3, 592492/3)]$ |
| 401115.br2 |
401115br2 |
401115.br |
401115br |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 5^{2} \cdot 11^{6} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$291720$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$921600$ |
$1.231779$ |
$1723683599/10989225$ |
$0.85519$ |
$2.94213$ |
$[1, 0, 1, 3022, 202673]$ |
\(y^2+xy+y=x^3+3022x+202673\) |
2.3.0.a.1, 4.6.0.a.1, 264.12.0.?, 4420.12.0.?, 8840.24.0.?, $\ldots$ |
$[ ]$ |
| 487305.dq2 |
487305dq2 |
487305.dq |
487305dq |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$61880$ |
$48$ |
$0$ |
$5.752647201$ |
$1$ |
|
$2$ |
$1843200$ |
$1.555094$ |
$1723683599/10989225$ |
$0.85519$ |
$3.19464$ |
$[1, -1, 0, 11016, -1411187]$ |
\(y^2+xy=x^3-x^2+11016x-1411187\) |
2.3.0.a.1, 4.6.0.a.1, 56.12.0-4.a.1.1, 4420.12.0.?, 8840.24.0.?, $\ldots$ |
$[(7884, 696121)]$ |