| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 72075.o1 |
72075c1 |
72075.o |
72075c |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 31^{2} \) |
\( 3^{5} \cdot 5^{2} \cdot 31^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$930$ |
$60$ |
$3$ |
$2.039326126$ |
$1$ |
|
$6$ |
$30720$ |
$0.485527$ |
$163840000/243$ |
$1.18095$ |
$2.89977$ |
$[0, -1, 1, -1033, 13113]$ |
\(y^2+y=x^3-x^2-1033x+13113\) |
5.15.0.a.1, 30.30.1.b.1, 155.30.0.?, 186.2.0.?, 930.60.3.? |
$[(21, 15), (127/3, 901/3)]$ |
| 72075.q1 |
72075s1 |
72075.q |
72075s |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 31^{2} \) |
\( 3^{5} \cdot 5^{8} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$930$ |
$60$ |
$3$ |
$11.42531756$ |
$1$ |
|
$0$ |
$4761600$ |
$3.007240$ |
$163840000/243$ |
$1.18095$ |
$5.60511$ |
$[0, -1, 1, -24825833, -47541298432]$ |
\(y^2+y=x^3-x^2-24825833x-47541298432\) |
5.15.0.a.1, 30.30.1.b.1, 155.30.0.?, 186.2.0.?, 930.60.3.? |
$[(119446117/74, 1267823576913/74)]$ |
| 72075.w1 |
72075bh1 |
72075.w |
72075bh |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 31^{2} \) |
\( 3^{5} \cdot 5^{8} \cdot 31^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$930$ |
$60$ |
$3$ |
$0.417390836$ |
$1$ |
|
$12$ |
$153600$ |
$1.290247$ |
$163840000/243$ |
$1.18095$ |
$3.76309$ |
$[0, 1, 1, -25833, 1587494]$ |
\(y^2+y=x^3+x^2-25833x+1587494\) |
5.15.0.a.1, 30.30.1.b.1, 155.30.0.?, 186.2.0.?, 930.60.3.? |
$[(258, 3487), (72, 325)]$ |
| 72075.y1 |
72075z1 |
72075.y |
72075z |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 31^{2} \) |
\( 3^{5} \cdot 5^{2} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$930$ |
$60$ |
$3$ |
$4.393116057$ |
$1$ |
|
$0$ |
$952320$ |
$2.202522$ |
$163840000/243$ |
$1.18095$ |
$4.74179$ |
$[0, 1, 1, -993033, -380727601]$ |
\(y^2+y=x^3+x^2-993033x-380727601\) |
5.15.0.a.1, 30.30.1.b.1, 155.30.0.?, 186.2.0.?, 930.60.3.? |
$[(37791/5, 4960139/5)]$ |
| 216225.ba1 |
216225be1 |
216225.ba |
216225be |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( 3^{11} \cdot 5^{2} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$930$ |
$60$ |
$3$ |
$1.864185118$ |
$1$ |
|
$4$ |
$7618560$ |
$2.751827$ |
$163840000/243$ |
$1.18095$ |
$4.85432$ |
$[0, 0, 1, -8937300, 10270707921]$ |
\(y^2+y=x^3-8937300x+10270707921\) |
5.15.0.a.1, 30.30.1.b.1, 155.30.0.?, 186.2.0.?, 930.60.3.? |
$[(-961, 134059)]$ |
| 216225.bd1 |
216225v1 |
216225.bd |
216225v |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( 3^{11} \cdot 5^{8} \cdot 31^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$930$ |
$60$ |
$3$ |
$1$ |
$4$ |
$2$ |
$0$ |
$38092800$ |
$3.556545$ |
$163840000/243$ |
$1.18095$ |
$5.64043$ |
$[0, 0, 1, -223432500, 1283838490156]$ |
\(y^2+y=x^3-223432500x+1283838490156\) |
5.15.0.a.1, 30.30.1.b.1, 155.30.0.?, 186.2.0.?, 930.60.3.? |
$[ ]$ |
| 216225.bh1 |
216225x1 |
216225.bh |
216225x |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( 3^{11} \cdot 5^{8} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$930$ |
$60$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1228800$ |
$1.839552$ |
$163840000/243$ |
$1.18095$ |
$3.96314$ |
$[0, 0, 1, -232500, -43094844]$ |
\(y^2+y=x^3-232500x-43094844\) |
5.15.0.a.1, 30.30.1.b.1, 155.30.0.?, 186.2.0.?, 930.60.3.? |
$[ ]$ |
| 216225.bk1 |
216225bh1 |
216225.bk |
216225bh |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( 3^{11} \cdot 5^{2} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$930$ |
$60$ |
$3$ |
$3.653124467$ |
$1$ |
|
$2$ |
$245760$ |
$1.034834$ |
$163840000/243$ |
$1.18095$ |
$3.17703$ |
$[0, 0, 1, -9300, -344759]$ |
\(y^2+y=x^3-9300x-344759\) |
5.15.0.a.1, 30.30.1.b.1, 155.30.0.?, 186.2.0.?, 930.60.3.? |
$[(589, 14089)]$ |