Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
33165.c1 |
33165e1 |
33165.c |
33165e |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{4} \cdot 11^{4} \cdot 67^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$0.616874753$ |
$1$ |
|
$5$ |
$67584$ |
$1.382059$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$3.90150$ |
$[1, -1, 1, -15773, -635828]$ |
\(y^2+xy+y=x^3-x^2-15773x-635828\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[(250, 3191)]$ |
33165.o1 |
33165h1 |
33165.o |
33165h |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{4} \cdot 11^{4} \cdot 67^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$1.698614612$ |
$1$ |
|
$3$ |
$202752$ |
$1.931364$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$4.53475$ |
$[1, -1, 0, -141954, 17309303]$ |
\(y^2+xy=x^3-x^2-141954x+17309303\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[(122, 1279)]$ |
165825.j1 |
165825o1 |
165825.j |
165825o |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{10} \cdot 11^{4} \cdot 67^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$5.778726943$ |
$1$ |
|
$3$ |
$4866048$ |
$2.736084$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$4.73097$ |
$[1, -1, 1, -3548855, 2160114022]$ |
\(y^2+xy+y=x^3-x^2-3548855x+2160114022\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[(464, 24530)]$ |
165825.bh1 |
165825bk1 |
165825.bh |
165825bk |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{10} \cdot 11^{4} \cdot 67^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1622016$ |
$2.186779$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$4.18251$ |
$[1, -1, 0, -394317, -79872784]$ |
\(y^2+xy=x^3-x^2-394317x-79872784\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[ ]$ |
364815.l1 |
364815l1 |
364815.l |
364815l |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{4} \cdot 11^{10} \cdot 67^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$24330240$ |
$3.130314$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$4.80909$ |
$[1, -1, 1, -17176457, -22987152944]$ |
\(y^2+xy+y=x^3-x^2-17176457x-22987152944\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[ ]$ |
364815.ba1 |
364815ba1 |
364815.ba |
364815ba |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{4} \cdot 11^{10} \cdot 67^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$4.121388159$ |
$1$ |
|
$3$ |
$8110080$ |
$2.581005$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$4.29441$ |
$[1, -1, 0, -1908495, 852012200]$ |
\(y^2+xy=x^3-x^2-1908495x+852012200\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[(1048, 928)]$ |