Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2211.c3 |
2211f2 |
2211.c |
2211f |
$3$ |
$9$ |
\( 3 \cdot 11 \cdot 67 \) |
\( - 3^{3} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.24.0.1 |
3Cs.1.1 |
$13266$ |
$144$ |
$3$ |
$4.085843953$ |
$1$ |
|
$4$ |
$1296$ |
$0.606980$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.95651$ |
$[0, 1, 1, 243, -4705]$ |
\(y^2+y=x^3+x^2+243x-4705\) |
3.24.0-3.a.1.1, 603.72.0.?, 4422.48.1.?, 13266.144.3.? |
$[(2031, 91555)]$ |
6633.e3 |
6633i2 |
6633.e |
6633i |
$3$ |
$9$ |
\( 3^{2} \cdot 11 \cdot 67 \) |
\( - 3^{9} \cdot 11^{3} \cdot 67^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.24.0.1 |
3Cs.1.1 |
$13266$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$2$ |
$10368$ |
$1.156286$ |
$1580352929792/10808519931$ |
$1.01300$ |
$4.21163$ |
$[0, 0, 1, 2184, 129213]$ |
\(y^2+y=x^3+2184x+129213\) |
3.24.0-3.a.1.1, 603.72.0.?, 4422.48.1.?, 13266.144.3.? |
$[ ]$ |
24321.h3 |
24321p2 |
24321.h |
24321p |
$3$ |
$9$ |
\( 3 \cdot 11^{2} \cdot 67 \) |
\( - 3^{3} \cdot 11^{9} \cdot 67^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$13266$ |
$144$ |
$3$ |
$0.671199651$ |
$1$ |
|
$8$ |
$155520$ |
$1.805929$ |
$1580352929792/10808519931$ |
$1.01300$ |
$4.44171$ |
$[0, 1, 1, 29363, 6379522]$ |
\(y^2+y=x^3+x^2+29363x+6379522\) |
3.12.0.a.1, 33.24.0-3.a.1.1, 402.24.0.?, 603.36.0.?, 1206.72.0.?, $\ldots$ |
$[(-70, 1996), (2873/4, 267499/4)]$ |
35376.a3 |
35376r2 |
35376.a |
35376r |
$3$ |
$9$ |
\( 2^{4} \cdot 3 \cdot 11 \cdot 67 \) |
\( - 2^{12} \cdot 3^{3} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$26532$ |
$144$ |
$3$ |
$3.255813222$ |
$1$ |
|
$2$ |
$93312$ |
$1.300127$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.70331$ |
$[0, -1, 0, 3883, 304989]$ |
\(y^2=x^3-x^2+3883x+304989\) |
3.12.0.a.1, 12.24.0-3.a.1.1, 603.36.0.?, 2412.72.0.?, 4422.24.1.?, $\ldots$ |
$[(52, 803)]$ |
55275.i3 |
55275a2 |
55275.i |
55275a |
$3$ |
$9$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{3} \cdot 5^{6} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$66330$ |
$144$ |
$3$ |
$11.34169036$ |
$1$ |
|
$0$ |
$139968$ |
$1.411699$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.67457$ |
$[0, -1, 1, 6067, -600232]$ |
\(y^2+y=x^3-x^2+6067x-600232\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 603.36.0.?, 3015.72.0.?, 4422.24.1.?, $\ldots$ |
$[(77848/11, 21837408/11)]$ |
72963.m3 |
72963t2 |
72963.m |
72963t |
$3$ |
$9$ |
\( 3^{2} \cdot 11^{2} \cdot 67 \) |
\( - 3^{9} \cdot 11^{9} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$13266$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1244160$ |
$2.355236$ |
$1580352929792/10808519931$ |
$1.01300$ |
$4.59460$ |
$[0, 0, 1, 264264, -171982836]$ |
\(y^2+y=x^3+264264x-171982836\) |
3.12.0.a.1, 33.24.0-3.a.1.1, 402.24.0.?, 603.36.0.?, 1206.72.0.?, $\ldots$ |
$[ ]$ |
106128.bz3 |
106128bc2 |
106128.bz |
106128bc |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 11 \cdot 67 \) |
\( - 2^{12} \cdot 3^{9} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$26532$ |
$144$ |
$3$ |
$25.35036179$ |
$1$ |
|
$0$ |
$746496$ |
$1.849434$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.92134$ |
$[0, 0, 0, 34944, -8269648]$ |
\(y^2=x^3+34944x-8269648\) |
3.12.0.a.1, 12.24.0-3.a.1.1, 603.36.0.?, 2412.72.0.?, 4422.24.1.?, $\ldots$ |
$[(287106521113/12419, 154513901982503061/12419)]$ |
108339.g3 |
108339d2 |
108339.g |
108339d |
$3$ |
$9$ |
\( 3 \cdot 7^{2} \cdot 11 \cdot 67 \) |
\( - 3^{3} \cdot 7^{6} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$92862$ |
$144$ |
$3$ |
$3.872788268$ |
$1$ |
|
$0$ |
$489888$ |
$1.579935$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.63541$ |
$[0, -1, 1, 11891, 1637523]$ |
\(y^2+y=x^3-x^2+11891x+1637523\) |
3.12.0.a.1, 21.24.0-3.a.1.1, 603.36.0.?, 4221.72.0.?, 4422.24.1.?, $\ldots$ |
$[(141/2, 11587/2)]$ |
141504.bu3 |
141504dt2 |
141504.bu |
141504dt |
$3$ |
$9$ |
\( 2^{6} \cdot 3 \cdot 11 \cdot 67 \) |
\( - 2^{6} \cdot 3^{3} \cdot 11^{3} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$53064$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$186624$ |
$0.953554$ |
$1580352929792/10808519931$ |
$1.01300$ |
$2.91978$ |
$[0, -1, 0, 971, -38609]$ |
\(y^2=x^3-x^2+971x-38609\) |
3.12.0.a.1, 24.24.0-3.a.1.1, 603.36.0.?, 4422.24.1.?, 4824.72.0.?, $\ldots$ |
$[ ]$ |
141504.dr3 |
141504s2 |
141504.dr |
141504s |
$3$ |
$9$ |
\( 2^{6} \cdot 3 \cdot 11 \cdot 67 \) |
\( - 2^{6} \cdot 3^{3} \cdot 11^{3} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$53064$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$186624$ |
$0.953554$ |
$1580352929792/10808519931$ |
$1.01300$ |
$2.91978$ |
$[0, 1, 0, 971, 38609]$ |
\(y^2=x^3+x^2+971x+38609\) |
3.12.0.a.1, 24.24.0-3.a.1.2, 603.36.0.?, 4422.24.1.?, 4824.72.0.?, $\ldots$ |
$[ ]$ |
148137.g3 |
148137g2 |
148137.g |
148137g |
$3$ |
$9$ |
\( 3 \cdot 11 \cdot 67^{2} \) |
\( - 3^{3} \cdot 11^{3} \cdot 67^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$13266$ |
$144$ |
$3$ |
$9.292735626$ |
$1$ |
|
$0$ |
$5816448$ |
$2.709328$ |
$1580352929792/10808519931$ |
$1.01300$ |
$4.67819$ |
$[0, -1, 1, 1089331, 1438991138]$ |
\(y^2+y=x^3-x^2+1089331x+1438991138\) |
3.12.0.a.1, 66.24.0-3.a.1.1, 201.24.0.?, 603.72.0.?, 4422.48.1.?, $\ldots$ |
$[(3522469/10, 6613970897/10)]$ |
165825.v3 |
165825x2 |
165825.v |
165825x |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{9} \cdot 5^{6} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$66330$ |
$144$ |
$3$ |
$3.664691006$ |
$1$ |
|
$2$ |
$1119744$ |
$1.961006$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.88713$ |
$[0, 0, 1, 54600, 16151656]$ |
\(y^2+y=x^3+54600x+16151656\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 603.36.0.?, 3015.72.0.?, 4422.24.1.?, $\ldots$ |
$[(334, 8464)]$ |
325017.s3 |
325017s2 |
325017.s |
325017s |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 11 \cdot 67 \) |
\( - 3^{9} \cdot 7^{6} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$92862$ |
$144$ |
$3$ |
$1.930878540$ |
$1$ |
|
$2$ |
$3919104$ |
$2.129242$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.84009$ |
$[0, 0, 1, 107016, -44320145]$ |
\(y^2+y=x^3+107016x-44320145\) |
3.12.0.a.1, 21.24.0-3.a.1.1, 603.36.0.?, 4221.72.0.?, 4422.24.1.?, $\ldots$ |
$[(1453, 56380)]$ |
373659.m3 |
373659m2 |
373659.m |
373659m |
$3$ |
$9$ |
\( 3 \cdot 11 \cdot 13^{2} \cdot 67 \) |
\( - 3^{3} \cdot 11^{3} \cdot 13^{6} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$172458$ |
$144$ |
$3$ |
$7.614841560$ |
$1$ |
|
$2$ |
$2659392$ |
$1.889456$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.57410$ |
$[0, 1, 1, 41011, -10500460]$ |
\(y^2+y=x^3+x^2+41011x-10500460\) |
3.12.0.a.1, 39.24.0-3.a.1.1, 603.36.0.?, 4422.24.1.?, 7839.72.0.?, $\ldots$ |
$[(1890, 82594)]$ |
389136.e3 |
389136e2 |
389136.e |
389136e |
$3$ |
$9$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \cdot 67 \) |
\( - 2^{12} \cdot 3^{3} \cdot 11^{9} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$26532$ |
$144$ |
$3$ |
$17.93597614$ |
$1$ |
|
$0$ |
$11197440$ |
$2.499077$ |
$1580352929792/10808519931$ |
$1.01300$ |
$4.13116$ |
$[0, -1, 0, 469803, -407819619]$ |
\(y^2=x^3-x^2+469803x-407819619\) |
3.12.0.a.1, 132.24.0.?, 603.36.0.?, 804.24.0.?, 2412.72.0.?, $\ldots$ |
$[(61576916/5, 483199893289/5)]$ |
424512.e3 |
424512e2 |
424512.e |
424512e |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 11 \cdot 67 \) |
\( - 2^{6} \cdot 3^{9} \cdot 11^{3} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$53064$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1492992$ |
$1.502861$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.18091$ |
$[0, 0, 0, 8736, 1033706]$ |
\(y^2=x^3+8736x+1033706\) |
3.12.0.a.1, 24.24.0-3.a.1.1, 603.36.0.?, 4422.24.1.?, 4824.72.0.?, $\ldots$ |
$[ ]$ |
424512.h3 |
424512h2 |
424512.h |
424512h |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 11 \cdot 67 \) |
\( - 2^{6} \cdot 3^{9} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$53064$ |
$144$ |
$3$ |
$0.354326329$ |
$1$ |
|
$4$ |
$1492992$ |
$1.502861$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.18091$ |
$[0, 0, 0, 8736, -1033706]$ |
\(y^2=x^3+8736x-1033706\) |
3.12.0.a.1, 24.24.0-3.a.1.2, 603.36.0.?, 4422.24.1.?, 4824.72.0.?, $\ldots$ |
$[(731, 19899)]$ |
444411.j3 |
444411j2 |
444411.j |
444411j |
$3$ |
$9$ |
\( 3^{2} \cdot 11 \cdot 67^{2} \) |
\( - 3^{9} \cdot 11^{3} \cdot 67^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$13266$ |
$144$ |
$3$ |
$21.39904286$ |
$1$ |
|
$0$ |
$46531584$ |
$3.258633$ |
$1580352929792/10808519931$ |
$1.01300$ |
$4.78986$ |
$[0, 0, 1, 9803976, -38862564710]$ |
\(y^2+y=x^3+9803976x-38862564710\) |
3.12.0.a.1, 66.24.0-3.a.1.1, 201.24.0.?, 603.72.0.?, 4422.48.1.?, $\ldots$ |
$[(315290620921/5830, 182722333746996031/5830)]$ |