| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 9450.x1 |
9450be1 |
9450.x |
9450be |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{7} \cdot 3^{11} \cdot 5^{2} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6048$ |
$0.595588$ |
$15454515/896$ |
$0.87628$ |
$3.48021$ |
$[1, -1, 0, -852, 9296]$ |
\(y^2+xy=x^3-x^2-852x+9296\) |
168.2.0.? |
$[ ]$ |
| 9450.bd1 |
9450x1 |
9450.bd |
9450x |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{8} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$0.527262096$ |
$1$ |
|
$4$ |
$10080$ |
$0.851001$ |
$15454515/896$ |
$0.87628$ |
$3.81504$ |
$[1, -1, 0, -2367, -41459]$ |
\(y^2+xy=x^3-x^2-2367x-41459\) |
168.2.0.? |
$[(-31, 53)]$ |
| 9450.cd1 |
9450dg1 |
9450.cd |
9450dg |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$0.578257147$ |
$1$ |
|
$4$ |
$2016$ |
$0.046282$ |
$15454515/896$ |
$0.87628$ |
$2.76010$ |
$[1, -1, 1, -95, -313]$ |
\(y^2+xy+y=x^3-x^2-95x-313\) |
168.2.0.? |
$[(-5, 6)]$ |
| 9450.dw1 |
9450cx1 |
9450.dw |
9450cx |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{7} \cdot 3^{11} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$30240$ |
$1.400307$ |
$15454515/896$ |
$0.87628$ |
$4.53514$ |
$[1, -1, 1, -21305, 1140697]$ |
\(y^2+xy+y=x^3-x^2-21305x+1140697\) |
168.2.0.? |
$[ ]$ |
| 66150.v1 |
66150fa1 |
66150.v |
66150fa |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{8} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$483840$ |
$1.823956$ |
$15454515/896$ |
$0.87628$ |
$4.19809$ |
$[1, -1, 0, -115992, 14452416]$ |
\(y^2+xy=x^3-x^2-115992x+14452416\) |
168.2.0.? |
$[ ]$ |
| 66150.eq1 |
66150bi1 |
66150.eq |
66150bi |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 3^{11} \cdot 5^{2} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$290304$ |
$1.568542$ |
$15454515/896$ |
$0.87628$ |
$3.92196$ |
$[1, -1, 0, -41757, -3105019]$ |
\(y^2+xy=x^3-x^2-41757x-3105019\) |
168.2.0.? |
$[ ]$ |
| 66150.fx1 |
66150gs1 |
66150.fx |
66150gs |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{2} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$0.125241230$ |
$1$ |
|
$10$ |
$96768$ |
$1.019238$ |
$15454515/896$ |
$0.87628$ |
$3.32810$ |
$[1, -1, 1, -4640, 116547]$ |
\(y^2+xy+y=x^3-x^2-4640x+116547\) |
168.2.0.? |
$[(23, 135)]$ |
| 66150.jr1 |
66150kf1 |
66150.jr |
66150kf |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 3^{11} \cdot 5^{8} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1.713996168$ |
$1$ |
|
$4$ |
$1451520$ |
$2.373260$ |
$15454515/896$ |
$0.87628$ |
$4.79195$ |
$[1, -1, 1, -1043930, -389171303]$ |
\(y^2+xy+y=x^3-x^2-1043930x-389171303\) |
168.2.0.? |
$[(-481, 1465)]$ |
| 75600.r1 |
75600hn1 |
75600.r |
75600hn |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{19} \cdot 3^{11} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$725760$ |
$2.093452$ |
$15454515/896$ |
$0.87628$ |
$4.43608$ |
$[0, 0, 0, -340875, -72663750]$ |
\(y^2=x^3-340875x-72663750\) |
168.2.0.? |
$[ ]$ |
| 75600.dq1 |
75600hl1 |
75600.dq |
75600hl |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{19} \cdot 3^{5} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$1.544147$ |
$15454515/896$ |
$0.87628$ |
$3.84928$ |
$[0, 0, 0, -37875, 2691250]$ |
\(y^2=x^3-37875x+2691250\) |
168.2.0.? |
$[ ]$ |
| 75600.ew1 |
75600dq1 |
75600.ew |
75600dq |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{19} \cdot 3^{11} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$6.791733977$ |
$1$ |
|
$0$ |
$145152$ |
$1.288734$ |
$15454515/896$ |
$0.87628$ |
$3.57643$ |
$[0, 0, 0, -13635, -581310]$ |
\(y^2=x^3-13635x-581310\) |
168.2.0.? |
$[(-1721/5, 22042/5)]$ |
| 75600.hx1 |
75600dp1 |
75600.hx |
75600dp |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{19} \cdot 3^{5} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$0.493642665$ |
$1$ |
|
$4$ |
$48384$ |
$0.739429$ |
$15454515/896$ |
$0.87628$ |
$2.98963$ |
$[0, 0, 0, -1515, 21530]$ |
\(y^2=x^3-1515x+21530\) |
168.2.0.? |
$[(-11, 192)]$ |
| 302400.bk1 |
302400bk1 |
302400.bk |
302400bk |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{8} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1.516969152$ |
$1$ |
|
$4$ |
$1935360$ |
$1.890722$ |
$15454515/896$ |
$0.87628$ |
$3.75598$ |
$[0, 0, 0, -151500, 21530000]$ |
\(y^2=x^3-151500x+21530000\) |
168.2.0.? |
$[(274, 768)]$ |
| 302400.bo1 |
302400bo1 |
302400.bo |
302400bo |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{11} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$2.585144884$ |
$1$ |
|
$2$ |
$1161216$ |
$1.635309$ |
$15454515/896$ |
$0.87628$ |
$3.51311$ |
$[0, 0, 0, -54540, 4650480]$ |
\(y^2=x^3-54540x+4650480\) |
168.2.0.? |
$[(-194, 2816)]$ |
| 302400.jk1 |
302400jk1 |
302400.jk |
302400jk |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{11} \cdot 5^{8} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$10.30878185$ |
$1$ |
|
$0$ |
$5806080$ |
$2.440029$ |
$15454515/896$ |
$0.87628$ |
$4.27832$ |
$[0, 0, 0, -1363500, -581310000]$ |
\(y^2=x^3-1363500x-581310000\) |
168.2.0.? |
$[(-244475/19, 38488825/19)]$ |
| 302400.jm1 |
302400jm1 |
302400.jm |
302400jm |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$2.427929986$ |
$1$ |
|
$2$ |
$387072$ |
$1.086002$ |
$15454515/896$ |
$0.87628$ |
$2.99077$ |
$[0, 0, 0, -6060, -172240]$ |
\(y^2=x^3-6060x-172240\) |
168.2.0.? |
$[(-44, 96)]$ |
| 302400.mm1 |
302400mm1 |
302400.mm |
302400mm |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{11} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5806080$ |
$2.440029$ |
$15454515/896$ |
$0.87628$ |
$4.27832$ |
$[0, 0, 0, -1363500, 581310000]$ |
\(y^2=x^3-1363500x+581310000\) |
168.2.0.? |
$[ ]$ |
| 302400.mo1 |
302400mo1 |
302400.mo |
302400mo |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{2} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$387072$ |
$1.086002$ |
$15454515/896$ |
$0.87628$ |
$2.99077$ |
$[0, 0, 0, -6060, 172240]$ |
\(y^2=x^3-6060x+172240\) |
168.2.0.? |
$[ ]$ |
| 302400.ui1 |
302400ui1 |
302400.ui |
302400ui |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$1.890722$ |
$15454515/896$ |
$0.87628$ |
$3.75598$ |
$[0, 0, 0, -151500, -21530000]$ |
\(y^2=x^3-151500x-21530000\) |
168.2.0.? |
$[ ]$ |
| 302400.um1 |
302400um1 |
302400.um |
302400um |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{11} \cdot 5^{2} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1161216$ |
$1.635309$ |
$15454515/896$ |
$0.87628$ |
$3.51311$ |
$[0, 0, 0, -54540, -4650480]$ |
\(y^2=x^3-54540x-4650480\) |
168.2.0.? |
$[ ]$ |
| 529200.dg1 |
- |
529200.dg |
- |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{19} \cdot 3^{11} \cdot 5^{8} \cdot 7^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$3.023127307$ |
$1$ |
|
$10$ |
$34836480$ |
$3.066410$ |
$15454515/896$ |
$0.87628$ |
$4.66699$ |
$[0, 0, 0, -16702875, 24923666250]$ |
\(y^2=x^3-16702875x+24923666250\) |
168.2.0.? |
$[(3325, 78400), (-4025, 164150)]$ |
| 529200.dn1 |
- |
529200.dn |
- |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{19} \cdot 3^{11} \cdot 5^{2} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6967296$ |
$2.261692$ |
$15454515/896$ |
$0.87628$ |
$3.93427$ |
$[0, 0, 0, -668115, 199389330]$ |
\(y^2=x^3-668115x+199389330\) |
168.2.0.? |
$[ ]$ |
| 529200.wc1 |
- |
529200.wc |
- |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{19} \cdot 3^{5} \cdot 5^{8} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11612160$ |
$2.517101$ |
$15454515/896$ |
$0.87628$ |
$4.16683$ |
$[0, 0, 0, -1855875, -923098750]$ |
\(y^2=x^3-1855875x-923098750\) |
168.2.0.? |
$[ ]$ |
| 529200.wh1 |
- |
529200.wh |
- |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{19} \cdot 3^{5} \cdot 5^{2} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2322432$ |
$1.712383$ |
$15454515/896$ |
$0.87628$ |
$3.43411$ |
$[0, 0, 0, -74235, -7384790]$ |
\(y^2=x^3-74235x-7384790\) |
168.2.0.? |
$[ ]$ |
| 2116800.iy1 |
- |
2116800.iy |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{25} \cdot 3^{11} \cdot 5^{2} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$5.454166090$ |
$1$ |
|
$0$ |
$55738368$ |
$2.608265$ |
$15454515/896$ |
$0.87628$ |
$3.84535$ |
$[0, 0, 0, -2672460, -1595114640]$ |
\(y^2=x^3-2672460x-1595114640\) |
168.2.0.? |
$[(48286/5, 2646784/5)]$ |
| 2116800.jb1 |
- |
2116800.jb |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{2} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$3.153968337$ |
$1$ |
|
$2$ |
$18579456$ |
$2.058956$ |
$15454515/896$ |
$0.87628$ |
$3.39279$ |
$[0, 0, 0, -296940, -59078320]$ |
\(y^2=x^3-296940x-59078320\) |
168.2.0.? |
$[(-371, 147)]$ |
| 2116800.jv1 |
- |
2116800.jv |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{8} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1.441331136$ |
$1$ |
|
$4$ |
$92897280$ |
$2.863678$ |
$15454515/896$ |
$0.87628$ |
$4.05578$ |
$[0, 0, 0, -7423500, -7384790000]$ |
\(y^2=x^3-7423500x-7384790000\) |
168.2.0.? |
$[(5250, 313600)]$ |
| 2116800.jy1 |
- |
2116800.jy |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{25} \cdot 3^{11} \cdot 5^{8} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$54.43757676$ |
$1$ |
|
$0$ |
$278691840$ |
$3.412983$ |
$15454515/896$ |
$0.87628$ |
$4.50833$ |
$[0, 0, 0, -66811500, -199389330000]$ |
\(y^2=x^3-66811500x-199389330000\) |
168.2.0.? |
$[(-6655070390315070336552716/34648232441, 1039219906404208072641549066076735952/34648232441)]$ |
| 2116800.cie1 |
- |
2116800.cie |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{25} \cdot 3^{11} \cdot 5^{2} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$6.571140050$ |
$1$ |
|
$0$ |
$55738368$ |
$2.608265$ |
$15454515/896$ |
$0.87628$ |
$3.84535$ |
$[0, 0, 0, -2672460, 1595114640]$ |
\(y^2=x^3-2672460x+1595114640\) |
168.2.0.? |
$[(18754/3, 1923328/3)]$ |
| 2116800.cih1 |
- |
2116800.cih |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{2} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$5.358855098$ |
$1$ |
|
$0$ |
$18579456$ |
$2.058956$ |
$15454515/896$ |
$0.87628$ |
$3.39279$ |
$[0, 0, 0, -296940, 59078320]$ |
\(y^2=x^3-296940x+59078320\) |
168.2.0.? |
$[(-399/2, 74921/2)]$ |
| 2116800.cjb1 |
- |
2116800.cjb |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{8} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1.281671155$ |
$1$ |
|
$4$ |
$92897280$ |
$2.863678$ |
$15454515/896$ |
$0.87628$ |
$4.05578$ |
$[0, 0, 0, -7423500, 7384790000]$ |
\(y^2=x^3-7423500x+7384790000\) |
168.2.0.? |
$[(1150, 19200)]$ |
| 2116800.cje1 |
- |
2116800.cje |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{25} \cdot 3^{11} \cdot 5^{8} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$15.35152852$ |
$1$ |
|
$0$ |
$278691840$ |
$3.412983$ |
$15454515/896$ |
$0.87628$ |
$4.50833$ |
$[0, 0, 0, -66811500, 199389330000]$ |
\(y^2=x^3-66811500x+199389330000\) |
168.2.0.? |
$[(-23553719/68, 200731274821/68)]$ |