Learn more

Refine search


Results (42 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
840.i1 840.i \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -656, 6240]$ \(y^2=x^3+x^2-656x+6240\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 56.24.0-56.bb.1.14, 60.12.0-4.c.1.1, $\ldots$ $[ ]$
1680.c1 1680.c \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $1.241500565$ $[0, -1, 0, -656, -6240]$ \(y^2=x^3-x^2-656x-6240\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 56.24.0-56.bb.1.6, 60.12.0-4.c.1.2, $\ldots$ $[(-14, 2)]$
2520.s1 2520.s \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -5907, -174386]$ \(y^2=x^3-5907x-174386\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$ $[ ]$
4200.c1 4200.c \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $3.450795623$ $[0, -1, 0, -16408, 812812]$ \(y^2=x^3-x^2-16408x+812812\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$ $[(177, 1850)]$
5040.y1 5040.y \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $1.775811160$ $[0, 0, 0, -5907, 174386]$ \(y^2=x^3-5907x+174386\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0-4.c.1.1, 56.12.0.bb.1, $\ldots$ $[(55, 126)]$
5880.m1 5880.m \( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -32160, -2204628]$ \(y^2=x^3-x^2-32160x-2204628\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 56.24.0-56.bb.1.13, 120.24.0.?, $\ldots$ $[ ]$
6720.bc1 6720.bc \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \) $1$ $\Z/4\Z$ $2.766652700$ $[0, -1, 0, -2625, 52545]$ \(y^2=x^3-x^2-2625x+52545\) 2.3.0.a.1, 4.12.0-4.c.1.1, 56.24.0-56.bb.1.2, 120.24.0.?, 840.48.0.? $[(32, 17)]$
6720.cd1 6720.cd \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2625, -52545]$ \(y^2=x^3+x^2-2625x-52545\) 2.3.0.a.1, 4.12.0-4.c.1.2, 56.24.0-56.bb.1.10, 120.24.0.?, 840.48.0.? $[ ]$
8400.cl1 8400.cl \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $3.101242529$ $[0, 1, 0, -16408, -812812]$ \(y^2=x^3+x^2-16408x-812812\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.1, 56.12.0.bb.1, $\ldots$ $[(148, 150)]$
11760.ck1 11760.ck \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -32160, 2204628]$ \(y^2=x^3+x^2-32160x+2204628\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 56.24.0-56.bb.1.5, 120.24.0.?, $\ldots$ $[ ]$
12600.o1 12600.o \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $4.650975588$ $[0, 0, 0, -147675, -21798250]$ \(y^2=x^3-147675x-21798250\) 2.3.0.a.1, 4.12.0-4.c.1.2, 56.24.0-56.bb.1.7, 120.24.0.?, 840.48.0.? $[(-226, 182)]$
17640.q1 17640.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z$ $5.225542455$ $[0, 0, 0, -289443, 59814398]$ \(y^2=x^3-289443x+59814398\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.6, 56.12.0.bb.1, $\ldots$ $[(646, 11934)]$
20160.r1 20160.r \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $0.688654939$ $[0, 0, 0, -23628, 1395088]$ \(y^2=x^3-23628x+1395088\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$ $[(98, 144)]$
20160.bw1 20160.bw \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $3.037035349$ $[0, 0, 0, -23628, -1395088]$ \(y^2=x^3-23628x-1395088\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.1, 56.12.0.bb.1, $\ldots$ $[(-88, 52)]$
25200.el1 25200.el \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/4\Z$ $0.673830556$ $[0, 0, 0, -147675, 21798250]$ \(y^2=x^3-147675x+21798250\) 2.3.0.a.1, 4.12.0-4.c.1.1, 56.24.0-56.bb.1.15, 120.24.0.?, 840.48.0.? $[(185, 900)]$
29400.dr1 29400.dr \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $10.90628512$ $[0, 1, 0, -804008, -277186512]$ \(y^2=x^3+x^2-804008x-277186512\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.4, 40.12.0-4.c.1.5, 56.12.0.bb.1, $\ldots$ $[(-113081/15, 1507528/15)]$
33600.de1 33600.de \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.059591920$ $[0, -1, 0, -65633, -6436863]$ \(y^2=x^3-x^2-65633x-6436863\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$ $[(477, 8400)]$
33600.ek1 33600.ek \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -65633, 6436863]$ \(y^2=x^3+x^2-65633x+6436863\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0-4.c.1.1, 56.12.0.bb.1, $\ldots$ $[ ]$
35280.bo1 35280.bo \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z$ $3.193869645$ $[0, 0, 0, -289443, -59814398]$ \(y^2=x^3-289443x-59814398\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.6, 56.12.0.bb.1, $\ldots$ $[(-313, 342)]$
47040.v1 47040.v \( 2^{6} \cdot 3 \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z$ $4.148460141$ $[0, -1, 0, -128641, 17765665]$ \(y^2=x^3-x^2-128641x+17765665\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 28.12.0-4.c.1.1, 56.24.0-56.bb.1.9, $\ldots$ $[(231, 568)]$
47040.ev1 47040.ev \( 2^{6} \cdot 3 \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z$ $6.985942741$ $[0, 1, 0, -128641, -17765665]$ \(y^2=x^3+x^2-128641x-17765665\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 28.12.0-4.c.1.2, 56.24.0-56.bb.1.1, $\ldots$ $[(874, 23199)]$
58800.ct1 58800.ct \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -804008, 277186512]$ \(y^2=x^3-x^2-804008x+277186512\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.4, 40.12.0-4.c.1.5, 56.12.0.bb.1, $\ldots$ $[ ]$
88200.en1 88200.en \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -7236075, 7476799750]$ \(y^2=x^3-7236075x+7476799750\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 28.12.0-4.c.1.1, 56.24.0-56.bb.1.8, $\ldots$ $[ ]$
100800.eg1 100800.eg \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -590700, -174386000]$ \(y^2=x^3-590700x-174386000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 56.24.0-56.bb.1.11, 60.12.0-4.c.1.2, $\ldots$ $[ ]$
100800.mp1 100800.mp \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -590700, 174386000]$ \(y^2=x^3-590700x+174386000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 56.24.0-56.bb.1.3, 60.12.0-4.c.1.1, $\ldots$ $[ ]$
101640.bn1 101640.bn \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.727811528$ $[0, 1, 0, -79416, -8623056]$ \(y^2=x^3+x^2-79416x-8623056\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 88.12.0.?, 120.12.0.?, $\ldots$ $[(-667/2, 831/2)]$
141120.mj1 141120.mj \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z$ $7.175733378$ $[0, 0, 0, -1157772, -478515184]$ \(y^2=x^3-1157772x-478515184\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 40.12.0-4.c.1.3, 56.12.0.bb.1, $\ldots$ $[(-5396/3, 9080/3)]$
141120.mm1 141120.mm \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1157772, 478515184]$ \(y^2=x^3-1157772x+478515184\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 40.12.0-4.c.1.3, 56.12.0.bb.1, $\ldots$ $[ ]$
141960.cd1 141960.cd \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $8.651879757$ $[0, 1, 0, -110920, 14152880]$ \(y^2=x^3+x^2-110920x+14152880\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 104.12.0.?, 120.12.0.?, $\ldots$ $[(40207/3, 8041292/3)]$
176400.kz1 176400.kz \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $5.272104896$ $[0, 0, 0, -7236075, -7476799750]$ \(y^2=x^3-7236075x-7476799750\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 28.12.0-4.c.1.2, 56.24.0-56.bb.1.16, $\ldots$ $[(7994, 667478)]$
203280.bl1 203280.bl \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.380478005$ $[0, -1, 0, -79416, 8623056]$ \(y^2=x^3-x^2-79416x+8623056\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 88.12.0.?, 120.12.0.?, $\ldots$ $[(218, 1274)]$
235200.gw1 235200.gw \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -3216033, -2214276063]$ \(y^2=x^3-x^2-3216033x-2214276063\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.5, 40.12.0-4.c.1.4, 56.12.0.bb.1, $\ldots$ $[ ]$
235200.ve1 235200.ve \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -3216033, 2214276063]$ \(y^2=x^3+x^2-3216033x+2214276063\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.5, 40.12.0-4.c.1.4, 56.12.0.bb.1, $\ldots$ $[ ]$
242760.bf1 242760.bf \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $7.679964889$ $[0, -1, 0, -189680, 31795020]$ \(y^2=x^3-x^2-189680x+31795020\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 120.12.0.?, 136.12.0.?, $\ldots$ $[(2197, 101068)]$
283920.ds1 283920.ds \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.940636269$ $[0, -1, 0, -110920, -14152880]$ \(y^2=x^3-x^2-110920x-14152880\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 104.12.0.?, 120.12.0.?, $\ldots$ $[(477, 6422)]$
303240.j1 303240.j \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19^{2} \) $1$ $\Z/2\Z$ $6.272959702$ $[0, -1, 0, -236936, -44221524]$ \(y^2=x^3-x^2-236936x-44221524\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 120.12.0.?, 152.12.0.?, $\ldots$ $[(-1139/2, 2215/2)]$
304920.dd1 304920.dd \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.856338666$ $[0, 0, 0, -714747, 232107766]$ \(y^2=x^3-714747x+232107766\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 120.12.0.?, 220.12.0.?, $\ldots$ $[(4750/3, 37142/3)]$
425880.q1 425880.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.418607212$ $[0, 0, 0, -998283, -383126042]$ \(y^2=x^3-998283x-383126042\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 120.12.0.?, 260.12.0.?, $\ldots$ $[(1166, 6174)]$
444360.ce1 444360.ce \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $13.92476767$ $[0, 1, 0, -347200, -78699232]$ \(y^2=x^3+x^2-347200x-78699232\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 120.12.0.?, 184.12.0.?, $\ldots$ $[(20753689/120, 84946897763/120)]$
485520.ie1 485520.ie \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -189680, -31795020]$ \(y^2=x^3+x^2-189680x-31795020\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 120.12.0.?, 136.12.0.?, $\ldots$ $[ ]$
705600.yf1 705600.yf \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $2$ $\Z/2\Z$ $8.723945263$ $[0, 0, 0, -28944300, -59814398000]$ \(y^2=x^3-28944300x-59814398000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 56.24.0-56.bb.1.4, 120.24.0.?, $\ldots$ $[(-3115, 11025), (-2995, 2925)]$
705600.zb1 705600.zb \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.955256430$ $[0, 0, 0, -28944300, 59814398000]$ \(y^2=x^3-28944300x+59814398000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 56.24.0-56.bb.1.12, 120.24.0.?, $\ldots$ $[(2870, 19600)]$
  displayed columns for results