Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
810.b2 |
810d2 |
810.b |
810d |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \) |
\( - 2^{12} \cdot 3^{10} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$60$ |
$16$ |
$0$ |
$1.087398386$ |
$1$ |
|
$2$ |
$432$ |
$0.428540$ |
$15166431/20480$ |
$0.98011$ |
$4.15235$ |
$[1, -1, 0, 201, -1315]$ |
\(y^2+xy=x^3-x^2+201x-1315\) |
3.8.0-3.a.1.1, 20.2.0.a.1, 60.16.0-60.a.1.5 |
$[(14, 57)]$ |
810.g2 |
810f1 |
810.g |
810f |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$144$ |
$-0.120766$ |
$15166431/20480$ |
$0.98011$ |
$3.16809$ |
$[1, -1, 1, 22, 41]$ |
\(y^2+xy+y=x^3-x^2+22x+41\) |
3.8.0-3.a.1.2, 20.2.0.a.1, 60.16.0-60.a.1.8 |
$[ ]$ |
4050.n2 |
4050c1 |
4050.n |
4050c |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$0.905980560$ |
$1$ |
|
$4$ |
$3456$ |
$0.683953$ |
$15166431/20480$ |
$0.98011$ |
$3.71679$ |
$[1, -1, 0, 558, 5716]$ |
\(y^2+xy=x^3-x^2+558x+5716\) |
3.4.0.a.1, 12.8.0-3.a.1.3, 15.8.0-3.a.1.2, 20.2.0.a.1, 60.16.0-60.a.1.7 |
$[(84, 758)]$ |
4050.ba2 |
4050bf2 |
4050.ba |
4050bf |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$0.098455905$ |
$1$ |
|
$12$ |
$10368$ |
$1.233259$ |
$15166431/20480$ |
$0.98011$ |
$4.51035$ |
$[1, -1, 1, 5020, -159353]$ |
\(y^2+xy+y=x^3-x^2+5020x-159353\) |
3.4.0.a.1, 12.8.0-3.a.1.4, 15.8.0-3.a.1.1, 20.2.0.a.1, 60.16.0-60.a.1.6 |
$[(229, 3485)]$ |
6480.g2 |
6480i1 |
6480.g |
6480i |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{24} \cdot 3^{4} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.572381$ |
$15166431/20480$ |
$0.98011$ |
$3.36519$ |
$[0, 0, 0, 357, -2998]$ |
\(y^2=x^3+357x-2998\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 |
$[ ]$ |
6480.v2 |
6480y2 |
6480.v |
6480y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{24} \cdot 3^{10} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$1.121687$ |
$15166431/20480$ |
$0.98011$ |
$4.11626$ |
$[0, 0, 0, 3213, 80946]$ |
\(y^2=x^3+3213x+80946\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 |
$[ ]$ |
25920.r2 |
25920bo2 |
25920.r |
25920bo |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5 \) |
\( - 2^{30} \cdot 3^{10} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$1.468262$ |
$15166431/20480$ |
$0.98011$ |
$3.96399$ |
$[0, 0, 0, 12852, -647568]$ |
\(y^2=x^3+12852x-647568\) |
3.4.0.a.1, 20.2.0.a.1, 24.8.0-3.a.1.1, 60.8.0.a.1, 120.16.0.? |
$[ ]$ |
25920.y2 |
25920da2 |
25920.y |
25920da |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5 \) |
\( - 2^{30} \cdot 3^{10} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$3.030368367$ |
$1$ |
|
$0$ |
$82944$ |
$1.468262$ |
$15166431/20480$ |
$0.98011$ |
$3.96399$ |
$[0, 0, 0, 12852, 647568]$ |
\(y^2=x^3+12852x+647568\) |
3.4.0.a.1, 20.2.0.a.1, 24.8.0-3.a.1.3, 60.8.0.a.1, 120.16.0.? |
$[(34/3, 22528/3)]$ |
25920.cf2 |
25920u1 |
25920.cf |
25920u |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5 \) |
\( - 2^{30} \cdot 3^{4} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$0.918955$ |
$15166431/20480$ |
$0.98011$ |
$3.31538$ |
$[0, 0, 0, 1428, 23984]$ |
\(y^2=x^3+1428x+23984\) |
3.4.0.a.1, 20.2.0.a.1, 24.8.0-3.a.1.2, 60.8.0.a.1, 120.16.0.? |
$[ ]$ |
25920.cq2 |
25920cq1 |
25920.cq |
25920cq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5 \) |
\( - 2^{30} \cdot 3^{4} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$3.183864503$ |
$1$ |
|
$0$ |
$27648$ |
$0.918955$ |
$15166431/20480$ |
$0.98011$ |
$3.31538$ |
$[0, 0, 0, 1428, -23984]$ |
\(y^2=x^3+1428x-23984\) |
3.4.0.a.1, 20.2.0.a.1, 24.8.0-3.a.1.4, 60.8.0.a.1, 120.16.0.? |
$[(1354/3, 51200/3)]$ |
32400.bb2 |
32400bn1 |
32400.bb |
32400bn |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{24} \cdot 3^{4} \cdot 5^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$1.377100$ |
$15166431/20480$ |
$0.98011$ |
$3.77349$ |
$[0, 0, 0, 8925, -374750]$ |
\(y^2=x^3+8925x-374750\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 20.2.0.a.1, 60.16.0-60.a.1.3 |
$[ ]$ |
32400.bq2 |
32400cy2 |
32400.bq |
32400cy |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{24} \cdot 3^{10} \cdot 5^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$3.148888846$ |
$1$ |
|
$2$ |
$248832$ |
$1.926407$ |
$15166431/20480$ |
$0.98011$ |
$4.40817$ |
$[0, 0, 0, 80325, 10118250]$ |
\(y^2=x^3+80325x+10118250\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 20.2.0.a.1, 60.16.0-60.a.1.2 |
$[(-65, 2150)]$ |
39690.a2 |
39690be2 |
39690.a |
39690be |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5 \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1.245658697$ |
$1$ |
|
$4$ |
$163296$ |
$1.401495$ |
$15166431/20480$ |
$0.98011$ |
$3.72882$ |
$[1, -1, 0, 9840, 431360]$ |
\(y^2+xy=x^3-x^2+9840x+431360\) |
3.4.0.a.1, 20.2.0.a.1, 21.8.0-3.a.1.2, 60.8.0.a.1, 420.16.0.? |
$[(-32, 304)]$ |
39690.cr2 |
39690ch1 |
39690.cr |
39690ch |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$54432$ |
$0.852189$ |
$15166431/20480$ |
$0.98011$ |
$3.10631$ |
$[1, -1, 1, 1093, -16341]$ |
\(y^2+xy+y=x^3-x^2+1093x-16341\) |
3.4.0.a.1, 20.2.0.a.1, 21.8.0-3.a.1.1, 60.8.0.a.1, 420.16.0.? |
$[ ]$ |
98010.o2 |
98010e1 |
98010.o |
98010e |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 11^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$660$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$155520$ |
$1.078182$ |
$15166431/20480$ |
$0.98011$ |
$3.09795$ |
$[1, -1, 0, 2700, -63024]$ |
\(y^2+xy=x^3-x^2+2700x-63024\) |
3.4.0.a.1, 20.2.0.a.1, 33.8.0-3.a.1.2, 60.8.0.a.1, 660.16.0.? |
$[ ]$ |
98010.da2 |
98010da2 |
98010.da |
98010da |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 11^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5 \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$660$ |
$16$ |
$0$ |
$1.593662276$ |
$1$ |
|
$2$ |
$466560$ |
$1.627487$ |
$15166431/20480$ |
$0.98011$ |
$3.67149$ |
$[1, -1, 1, 24298, 1677349]$ |
\(y^2+xy+y=x^3-x^2+24298x+1677349\) |
3.4.0.a.1, 20.2.0.a.1, 33.8.0-3.a.1.1, 60.8.0.a.1, 660.16.0.? |
$[(113, 2363)]$ |
129600.df2 |
129600it2 |
129600.df |
129600it |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{30} \cdot 3^{10} \cdot 5^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1.265136641$ |
$1$ |
|
$4$ |
$1990656$ |
$2.272980$ |
$15166431/20480$ |
$0.98011$ |
$4.24234$ |
$[0, 0, 0, 321300, 80946000]$ |
\(y^2=x^3+321300x+80946000\) |
3.4.0.a.1, 20.2.0.a.1, 24.8.0-3.a.1.5, 60.8.0.a.1, 120.16.0.? |
$[(474, 18432)]$ |
129600.ef2 |
129600fr1 |
129600.ef |
129600fr |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{30} \cdot 3^{4} \cdot 5^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$663552$ |
$1.723675$ |
$15166431/20480$ |
$0.98011$ |
$3.68241$ |
$[0, 0, 0, 35700, -2998000]$ |
\(y^2=x^3+35700x-2998000\) |
3.4.0.a.1, 20.2.0.a.1, 24.8.0-3.a.1.6, 60.8.0.a.1, 120.16.0.? |
$[ ]$ |
129600.fg2 |
129600q1 |
129600.fg |
129600q |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{30} \cdot 3^{4} \cdot 5^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$2.730336540$ |
$1$ |
|
$2$ |
$663552$ |
$1.723675$ |
$15166431/20480$ |
$0.98011$ |
$3.68241$ |
$[0, 0, 0, 35700, 2998000]$ |
\(y^2=x^3+35700x+2998000\) |
3.4.0.a.1, 20.2.0.a.1, 24.8.0-3.a.1.8, 60.8.0.a.1, 120.16.0.? |
$[(-60, 800)]$ |
129600.ge2 |
129600eb2 |
129600.ge |
129600eb |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{30} \cdot 3^{10} \cdot 5^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1990656$ |
$2.272980$ |
$15166431/20480$ |
$0.98011$ |
$4.24234$ |
$[0, 0, 0, 321300, -80946000]$ |
\(y^2=x^3+321300x-80946000\) |
3.4.0.a.1, 20.2.0.a.1, 24.8.0-3.a.1.7, 60.8.0.a.1, 120.16.0.? |
$[ ]$ |
136890.w2 |
136890by1 |
136890.w |
136890by |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 13^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$780$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$331776$ |
$1.161709$ |
$15166431/20480$ |
$0.98011$ |
$3.09518$ |
$[1, -1, 0, 3771, 101973]$ |
\(y^2+xy=x^3-x^2+3771x+101973\) |
3.4.0.a.1, 20.2.0.a.1, 39.8.0-3.a.1.1, 60.8.0.a.1, 780.16.0.? |
$[ ]$ |
136890.bv2 |
136890f2 |
136890.bv |
136890f |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 13^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5 \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$780$ |
$16$ |
$0$ |
$2.271821268$ |
$1$ |
|
$2$ |
$995328$ |
$1.711016$ |
$15166431/20480$ |
$0.98011$ |
$3.65252$ |
$[1, -1, 1, 33937, -2787209]$ |
\(y^2+xy+y=x^3-x^2+33937x-2787209\) |
3.4.0.a.1, 20.2.0.a.1, 39.8.0-3.a.1.2, 60.8.0.a.1, 780.16.0.? |
$[(491, 11246)]$ |
198450.ef2 |
198450ia1 |
198450.ef |
198450ia |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5^{7} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1306368$ |
$1.656908$ |
$15166431/20480$ |
$0.98011$ |
$3.48810$ |
$[1, -1, 0, 27333, -2015259]$ |
\(y^2+xy=x^3-x^2+27333x-2015259\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 84.8.0.?, 105.8.0.?, $\ldots$ |
$[ ]$ |
198450.ek2 |
198450j2 |
198450.ek |
198450j |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5^{7} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3919104$ |
$2.206215$ |
$15166431/20480$ |
$0.98011$ |
$4.02848$ |
$[1, -1, 1, 245995, 54165997]$ |
\(y^2+xy+y=x^3-x^2+245995x+54165997\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 84.8.0.?, 105.8.0.?, $\ldots$ |
$[ ]$ |
234090.ba2 |
234090ba2 |
234090.ba |
234090ba |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2239488$ |
$1.845146$ |
$15166431/20480$ |
$0.98011$ |
$3.62421$ |
$[1, -1, 0, 58035, -6228379]$ |
\(y^2+xy=x^3-x^2+58035x-6228379\) |
3.4.0.a.1, 20.2.0.a.1, 51.8.0-3.a.1.1, 60.8.0.a.1, 1020.16.0.? |
$[ ]$ |
234090.du2 |
234090du1 |
234090.du |
234090du |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$1.118569915$ |
$1$ |
|
$4$ |
$746496$ |
$1.295841$ |
$15166431/20480$ |
$0.98011$ |
$3.09105$ |
$[1, -1, 1, 6448, 228531]$ |
\(y^2+xy+y=x^3-x^2+6448x+228531\) |
3.4.0.a.1, 20.2.0.a.1, 51.8.0-3.a.1.2, 60.8.0.a.1, 1020.16.0.? |
$[(-21, 299)]$ |
292410.i2 |
292410i1 |
292410.i |
292410i |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1140$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$995328$ |
$1.351454$ |
$15166431/20480$ |
$0.98011$ |
$3.08944$ |
$[1, -1, 0, 8055, -323315]$ |
\(y^2+xy=x^3-x^2+8055x-323315\) |
3.4.0.a.1, 20.2.0.a.1, 57.8.0-3.a.1.1, 60.8.0.a.1, 1140.16.0.? |
$[ ]$ |
292410.bu2 |
292410bu2 |
292410.bu |
292410bu |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1140$ |
$16$ |
$0$ |
$0.574971573$ |
$1$ |
|
$4$ |
$2985984$ |
$1.900761$ |
$15166431/20480$ |
$0.98011$ |
$3.61317$ |
$[1, -1, 1, 72493, 8657011]$ |
\(y^2+xy+y=x^3-x^2+72493x+8657011\) |
3.4.0.a.1, 20.2.0.a.1, 57.8.0-3.a.1.2, 60.8.0.a.1, 1140.16.0.? |
$[(499, 12746)]$ |
317520.ei2 |
317520ei2 |
317520.ei |
317520ei |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{24} \cdot 3^{10} \cdot 5 \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$3919104$ |
$2.094643$ |
$15166431/20480$ |
$0.98011$ |
$3.77333$ |
$[0, 0, 0, 157437, -27764478]$ |
\(y^2=x^3+157437x-27764478\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 84.8.0.?, 210.8.0.?, $\ldots$ |
$[ ]$ |
317520.el2 |
317520el1 |
317520.el |
317520el |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{24} \cdot 3^{4} \cdot 5 \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1306368$ |
$1.545336$ |
$15166431/20480$ |
$0.98011$ |
$3.25300$ |
$[0, 0, 0, 17493, 1028314]$ |
\(y^2=x^3+17493x+1028314\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 84.8.0.?, 210.8.0.?, $\ldots$ |
$[ ]$ |
428490.i2 |
428490i2 |
428490.i |
428490i |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 23^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5 \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1380$ |
$16$ |
$0$ |
$16.80589577$ |
$1$ |
|
$0$ |
$4704480$ |
$1.996288$ |
$15166431/20480$ |
$0.98011$ |
$3.59511$ |
$[1, -1, 0, 106230, 15362036]$ |
\(y^2+xy=x^3-x^2+106230x+15362036\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 69.8.0-3.a.1.1, 1380.16.0.? |
$[(97138820/487, 1280300181298/487)]$ |
428490.bw2 |
428490bw1 |
428490.bw |
428490bw |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 23^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1380$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1568160$ |
$1.446981$ |
$15166431/20480$ |
$0.98011$ |
$3.08680$ |
$[1, -1, 1, 11803, -572899]$ |
\(y^2+xy+y=x^3-x^2+11803x-572899\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 69.8.0-3.a.1.2, 1380.16.0.? |
$[ ]$ |
490050.bt2 |
490050bt2 |
490050.bt |
490050bt |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5^{7} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$660$ |
$16$ |
$0$ |
$1.024881711$ |
$1$ |
|
$4$ |
$11197440$ |
$2.432205$ |
$15166431/20480$ |
$0.98011$ |
$3.95752$ |
$[1, -1, 0, 607458, 210276116]$ |
\(y^2+xy=x^3-x^2+607458x+210276116\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 165.8.0.?, $\ldots$ |
$[(-41, 13633)]$ |
490050.gm2 |
490050gm1 |
490050.gm |
490050gm |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5^{7} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$660$ |
$16$ |
$0$ |
$1.404854143$ |
$1$ |
|
$4$ |
$3732480$ |
$1.882900$ |
$15166431/20480$ |
$0.98011$ |
$3.45442$ |
$[1, -1, 1, 67495, -7810503]$ |
\(y^2+xy+y=x^3-x^2+67495x-7810503\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 165.8.0.?, $\ldots$ |
$[(135, 1868)]$ |
1270080.e2 |
- |
1270080.e |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{4} \cdot 5 \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10450944$ |
$1.891911$ |
$15166431/20480$ |
$0.98011$ |
$3.22805$ |
$[0, 0, 0, 69972, -8226512]$ |
\(y^2=x^3+69972x-8226512\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[ ]$ |
1270080.le2 |
- |
1270080.le |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{4} \cdot 5 \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$10.10383860$ |
$1$ |
|
$0$ |
$10450944$ |
$1.891911$ |
$15166431/20480$ |
$0.98011$ |
$3.22805$ |
$[0, 0, 0, 69972, 8226512]$ |
\(y^2=x^3+69972x+8226512\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[(1331738/37, 1599256576/37)]$ |
1270080.lp2 |
- |
1270080.lp |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{10} \cdot 5 \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$7.930770794$ |
$1$ |
|
$0$ |
$31352832$ |
$2.441216$ |
$15166431/20480$ |
$0.98011$ |
$3.69705$ |
$[0, 0, 0, 629748, -222115824]$ |
\(y^2=x^3+629748x-222115824\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[(73810/13, 25643008/13)]$ |
1270080.wp2 |
- |
1270080.wp |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{10} \cdot 5 \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$31352832$ |
$2.441216$ |
$15166431/20480$ |
$0.98011$ |
$3.69705$ |
$[0, 0, 0, 629748, 222115824]$ |
\(y^2=x^3+629748x+222115824\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[ ]$ |
1587600.q2 |
- |
1587600.q |
- |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{24} \cdot 3^{4} \cdot 5^{7} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$6.869318021$ |
$1$ |
|
$2$ |
$31352832$ |
$2.350056$ |
$15166431/20480$ |
$0.98011$ |
$3.56265$ |
$[0, 0, 0, 437325, 128539250]$ |
\(y^2=x^3+437325x+128539250\) |
3.4.0.a.1, 20.2.0.a.1, 42.8.0-3.a.1.2, 60.8.0.a.1, 420.16.0.? |
$[(14015, 1661050)]$ |
1587600.xl2 |
- |
1587600.xl |
- |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{24} \cdot 3^{10} \cdot 5^{7} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$94058496$ |
$2.899361$ |
$15166431/20480$ |
$0.98011$ |
$4.02433$ |
$[0, 0, 0, 3935925, -3470559750]$ |
\(y^2=x^3+3935925x-3470559750\) |
3.4.0.a.1, 20.2.0.a.1, 42.8.0-3.a.1.1, 60.8.0.a.1, 420.16.0.? |
$[ ]$ |
6350400.y2 |
- |
6350400.y |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{4} \cdot 5^{7} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$250822656$ |
$2.696629$ |
$15166431/20480$ |
$0.98011$ |
$3.51286$ |
$[0, 0, 0, 1749300, -1028314000]$ |
\(y^2=x^3+1749300x-1028314000\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[ ]$ |
6350400.ba2 |
- |
6350400.ba |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{10} \cdot 5^{7} \cdot 7^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$28.43194860$ |
$1$ |
|
$2$ |
$752467968$ |
$3.245934$ |
$15166431/20480$ |
$0.98011$ |
$3.93367$ |
$[0, 0, 0, 15743700, -27764478000]$ |
\(y^2=x^3+15743700x-27764478000\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[(19210, 2713600), (204730/11, 81152000/11)]$ |
6350400.cjb2 |
- |
6350400.cjb |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{10} \cdot 5^{7} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$9.980856185$ |
$1$ |
|
$0$ |
$752467968$ |
$3.245934$ |
$15166431/20480$ |
$0.98011$ |
$3.93367$ |
$[0, 0, 0, 15743700, 27764478000]$ |
\(y^2=x^3+15743700x+27764478000\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[(863160/13, 1079459100/13)]$ |
6350400.cjd2 |
- |
6350400.cjd |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{4} \cdot 5^{7} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$18.83064902$ |
$1$ |
|
$0$ |
$250822656$ |
$2.696629$ |
$15166431/20480$ |
$0.98011$ |
$3.51286$ |
$[0, 0, 0, 1749300, 1028314000]$ |
\(y^2=x^3+1749300x+1028314000\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[(44419779090/2191, 9463076489369600/2191)]$ |