Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
13260.g2 |
13260f2 |
13260.g |
13260f |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{10} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$3.062049552$ |
$1$ |
|
$3$ |
$983040$ |
$3.027206$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$6.20551$ |
$[0, -1, 0, 7018580, -6754625768]$ |
\(y^2=x^3-x^2+7018580x-6754625768\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 136.12.0.?, 520.24.0.?, $\ldots$ |
$[(5074, 399330)]$ |
39780.j2 |
39780n2 |
39780.j |
39780n |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{4} \cdot 13^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$16$ |
$2$ |
$1$ |
$7864320$ |
$3.576515$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$6.18419$ |
$[0, 0, 0, 63167217, 182311728518]$ |
\(y^2=x^3+63167217x+182311728518\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 408.12.0.?, 520.24.0.?, $\ldots$ |
$[ ]$ |
53040.co2 |
53040cr2 |
53040.co |
53040cr |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3932160$ |
$3.027206$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$5.41473$ |
$[0, 1, 0, 7018580, 6754625768]$ |
\(y^2=x^3+x^2+7018580x+6754625768\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 136.12.0.?, 520.24.0.?, $\ldots$ |
$[ ]$ |
66300.bb2 |
66300bh2 |
66300.bb |
66300bh |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{10} \cdot 13^{10} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1.697603007$ |
$1$ |
|
$3$ |
$23592960$ |
$3.831928$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$6.17571$ |
$[0, 1, 0, 175464492, -843977292012]$ |
\(y^2=x^3+x^2+175464492x-843977292012\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 520.24.0.?, 680.12.0.?, $\ldots$ |
$[(36843, 7458750)]$ |
159120.o2 |
159120bi2 |
159120.o |
159120bi |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{4} \cdot 13^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$31457280$ |
$3.576515$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$5.46842$ |
$[0, 0, 0, 63167217, -182311728518]$ |
\(y^2=x^3+63167217x-182311728518\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 408.12.0.?, 520.24.0.?, $\ldots$ |
$[ ]$ |
172380.d2 |
172380be2 |
172380.d |
172380be |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{16} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$165150720$ |
$4.309685$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$6.16179$ |
$[0, -1, 0, 1186139964, -14835168252360]$ |
\(y^2=x^3-x^2+1186139964x-14835168252360\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 136.12.0.?, 520.24.0.?, $\ldots$ |
$[ ]$ |
198900.x2 |
198900bj2 |
198900.x |
198900bj |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{10} \cdot 13^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$188743680$ |
$4.381233$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$6.15989$ |
$[0, 0, 0, 1579180425, 22788966064750]$ |
\(y^2=x^3+1579180425x+22788966064750\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 520.24.0.?, 2040.12.0.?, $\ldots$ |
$[ ]$ |
212160.l2 |
212160dk2 |
212160.l |
212160dk |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{14} \cdot 3^{8} \cdot 5^{4} \cdot 13^{10} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1.038001521$ |
$1$ |
|
$9$ |
$31457280$ |
$3.373783$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$5.14180$ |
$[0, -1, 0, 28074319, 54008931825]$ |
\(y^2=x^3-x^2+28074319x+54008931825\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 68.12.0-4.a.1.1, 520.24.0.?, $\ldots$ |
$[(-1399, 109512)]$ |
212160.fj2 |
212160fv2 |
212160.fj |
212160fv |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{14} \cdot 3^{8} \cdot 5^{4} \cdot 13^{10} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1.387285163$ |
$1$ |
|
$7$ |
$31457280$ |
$3.373783$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$5.14180$ |
$[0, 1, 0, 28074319, -54008931825]$ |
\(y^2=x^3+x^2+28074319x-54008931825\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 68.12.0-4.a.1.1, 520.24.0.?, $\ldots$ |
$[(5962, 570375)]$ |
225420.z2 |
225420n2 |
225420.z |
225420n |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{10} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$520$ |
$48$ |
$0$ |
$6.140244161$ |
$1$ |
|
$5$ |
$283115520$ |
$4.443817$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$6.15827$ |
$[0, 1, 0, 2028369524, -33173306180860]$ |
\(y^2=x^3+x^2+2028369524x-33173306180860\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 52.12.0.d.1, 104.24.0.?, $\ldots$ |
$[(15056, 882606)]$ |
265200.cw2 |
265200cw2 |
265200.cw |
265200cw |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{10} \cdot 13^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$94371840$ |
$3.831928$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$5.49016$ |
$[0, -1, 0, 175464492, 843977292012]$ |
\(y^2=x^3-x^2+175464492x+843977292012\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 520.24.0.?, 680.12.0.?, $\ldots$ |
$[ ]$ |