| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 10890.k1 |
10890d1 |
10890.k |
10890d |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{25} \cdot 3^{3} \cdot 5 \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$211200$ |
$2.265236$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.68158$ |
$[1, -1, 0, -921135, 337188781]$ |
\(y^2+xy=x^3-x^2-921135x+337188781\) |
120.2.0.? |
$[ ]$ |
| 10890.p1 |
10890i1 |
10890.p |
10890i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{25} \cdot 3^{9} \cdot 5 \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$2.993429241$ |
$1$ |
|
$4$ |
$57600$ |
$1.615595$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.84294$ |
$[1, -1, 0, -68514, 6852500]$ |
\(y^2+xy=x^3-x^2-68514x+6852500\) |
120.2.0.? |
$[(139, -56)]$ |
| 10890.bd1 |
10890bf1 |
10890.bd |
10890bf |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{25} \cdot 3^{3} \cdot 5 \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.230656032$ |
$1$ |
|
$6$ |
$19200$ |
$1.066288$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.13382$ |
$[1, -1, 1, -7613, -251259]$ |
\(y^2+xy+y=x^3-x^2-7613x-251259\) |
120.2.0.? |
$[(-49, 72)]$ |
| 10890.cd1 |
10890bj1 |
10890.cd |
10890bj |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{25} \cdot 3^{9} \cdot 5 \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$633600$ |
$2.814541$ |
$14934427706187/167772160$ |
$1.02328$ |
$6.39070$ |
$[1, -1, 1, -8290217, -9095806871]$ |
\(y^2+xy+y=x^3-x^2-8290217x-9095806871\) |
120.2.0.? |
$[ ]$ |
| 54450.s1 |
54450n1 |
54450.s |
54450n |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{25} \cdot 3^{9} \cdot 5^{7} \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$15206400$ |
$3.619263$ |
$14934427706187/167772160$ |
$1.02328$ |
$6.33304$ |
$[1, -1, 0, -207255417, -1137183114259]$ |
\(y^2+xy=x^3-x^2-207255417x-1137183114259\) |
120.2.0.? |
$[ ]$ |
| 54450.cw1 |
54450m1 |
54450.cw |
54450m |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{25} \cdot 3^{3} \cdot 5^{7} \cdot 11^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$460800$ |
$1.871008$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.40924$ |
$[1, -1, 0, -190317, -31597659]$ |
\(y^2+xy=x^3-x^2-190317x-31597659\) |
120.2.0.? |
$[ ]$ |
| 54450.er1 |
54450eg1 |
54450.er |
54450eg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{25} \cdot 3^{3} \cdot 5^{7} \cdot 11^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.232322288$ |
$1$ |
|
$8$ |
$5068800$ |
$3.069954$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.72857$ |
$[1, -1, 1, -23028380, 42125569247]$ |
\(y^2+xy+y=x^3-x^2-23028380x+42125569247\) |
120.2.0.? |
$[(-2571, 291685)]$ |
| 54450.gs1 |
54450ef1 |
54450.gs |
54450ef |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{25} \cdot 3^{9} \cdot 5^{7} \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.221146286$ |
$1$ |
|
$8$ |
$1382400$ |
$2.420315$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.01370$ |
$[1, -1, 1, -1712855, 854849647]$ |
\(y^2+xy+y=x^3-x^2-1712855x+854849647\) |
120.2.0.? |
$[(2179, 85310)]$ |
| 87120.l1 |
87120dc1 |
87120.l |
87120dc |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{37} \cdot 3^{3} \cdot 5 \cdot 11^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$6.421788170$ |
$1$ |
|
$0$ |
$5068800$ |
$2.958385$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.37417$ |
$[0, 0, 0, -14738163, -21565343822]$ |
\(y^2=x^3-14738163x-21565343822\) |
120.2.0.? |
$[(-274623/11, 18513920/11)]$ |
| 87120.cr1 |
87120da1 |
87120.cr |
87120da |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{37} \cdot 3^{3} \cdot 5 \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$4.123512781$ |
$1$ |
|
$2$ |
$460800$ |
$1.759436$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.10935$ |
$[0, 0, 0, -121803, 16202362]$ |
\(y^2=x^3-121803x+16202362\) |
120.2.0.? |
$[(119, 1842)]$ |
| 87120.dn1 |
87120dp1 |
87120.dn |
87120dp |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{37} \cdot 3^{9} \cdot 5 \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15206400$ |
$3.507690$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.95366$ |
$[0, 0, 0, -132643467, 582264283194]$ |
\(y^2=x^3-132643467x+582264283194\) |
120.2.0.? |
$[ ]$ |
| 87120.fy1 |
87120dn1 |
87120.fy |
87120dn |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{37} \cdot 3^{9} \cdot 5 \cdot 11^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1382400$ |
$2.308743$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.68884$ |
$[0, 0, 0, -1096227, -437463774]$ |
\(y^2=x^3-1096227x-437463774\) |
120.2.0.? |
$[ ]$ |
| 348480.bc1 |
348480bc1 |
348480.bc |
348480bc |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{43} \cdot 3^{9} \cdot 5 \cdot 11^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11059200$ |
$2.655315$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.50538$ |
$[0, 0, 0, -4384908, 3499710192]$ |
\(y^2=x^3-4384908x+3499710192\) |
120.2.0.? |
$[ ]$ |
| 348480.bs1 |
348480bs1 |
348480.bs |
348480bs |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{43} \cdot 3^{9} \cdot 5 \cdot 11^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$29.68755785$ |
$1$ |
|
$0$ |
$121651200$ |
$3.854263$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.63280$ |
$[0, 0, 0, -530573868, 4658114265552]$ |
\(y^2=x^3-530573868x+4658114265552\) |
120.2.0.? |
$[(61939528756044/80821, 365609860467763889232/80821)]$ |
| 348480.hf1 |
348480hf1 |
348480.hf |
348480hf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{43} \cdot 3^{9} \cdot 5 \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$9.500527204$ |
$1$ |
|
$0$ |
$11059200$ |
$2.655315$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.50538$ |
$[0, 0, 0, -4384908, -3499710192]$ |
\(y^2=x^3-4384908x-3499710192\) |
120.2.0.? |
$[(-64256286/223, 32936951808/223)]$ |
| 348480.hv1 |
348480hv1 |
348480.hv |
348480hv |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{43} \cdot 3^{9} \cdot 5 \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$121651200$ |
$3.854263$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.63280$ |
$[0, 0, 0, -530573868, -4658114265552]$ |
\(y^2=x^3-530573868x-4658114265552\) |
120.2.0.? |
$[ ]$ |
| 348480.ka1 |
348480ka1 |
348480.ka |
348480ka |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{43} \cdot 3^{3} \cdot 5 \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$4.941822188$ |
$1$ |
|
$0$ |
$3686400$ |
$2.106010$ |
$14934427706187/167772160$ |
$1.02328$ |
$3.98884$ |
$[0, 0, 0, -487212, -129618896]$ |
\(y^2=x^3-487212x-129618896\) |
120.2.0.? |
$[(99014/11, 5898240/11)]$ |
| 348480.km1 |
348480km1 |
348480.km |
348480km |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{43} \cdot 3^{3} \cdot 5 \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40550400$ |
$3.304958$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.11626$ |
$[0, 0, 0, -58952652, -172522750576]$ |
\(y^2=x^3-58952652x-172522750576\) |
120.2.0.? |
$[ ]$ |
| 348480.py1 |
348480py1 |
348480.py |
348480py |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{43} \cdot 3^{3} \cdot 5 \cdot 11^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3686400$ |
$2.106010$ |
$14934427706187/167772160$ |
$1.02328$ |
$3.98884$ |
$[0, 0, 0, -487212, 129618896]$ |
\(y^2=x^3-487212x+129618896\) |
120.2.0.? |
$[ ]$ |
| 348480.qk1 |
348480qk1 |
348480.qk |
348480qk |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
\( 2^{43} \cdot 3^{3} \cdot 5 \cdot 11^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$28.60805299$ |
$1$ |
|
$0$ |
$40550400$ |
$3.304958$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.11626$ |
$[0, 0, 0, -58952652, 172522750576]$ |
\(y^2=x^3-58952652x+172522750576\) |
120.2.0.? |
$[(3973591159685/34309, 4420852517118731961/34309)]$ |
| 435600.da1 |
435600da1 |
435600.da |
435600da |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{37} \cdot 3^{9} \cdot 5^{7} \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$4.948028406$ |
$1$ |
|
$2$ |
$33177600$ |
$3.113461$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.85136$ |
$[0, 0, 0, -27405675, -54682971750]$ |
\(y^2=x^3-27405675x-54682971750\) |
120.2.0.? |
$[(-3065, 22850)]$ |
| 435600.db1 |
435600db1 |
435600.db |
435600db |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{37} \cdot 3^{3} \cdot 5^{7} \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1.937031805$ |
$1$ |
|
$4$ |
$11059200$ |
$2.564156$ |
$14934427706187/167772160$ |
$1.02328$ |
$4.34370$ |
$[0, 0, 0, -3045075, 2025295250]$ |
\(y^2=x^3-3045075x+2025295250\) |
120.2.0.? |
$[(18265, 2457600)]$ |
| 435600.rp1 |
435600rp1 |
435600.rp |
435600rp |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{37} \cdot 3^{3} \cdot 5^{7} \cdot 11^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$39.21453207$ |
$1$ |
|
$0$ |
$121651200$ |
$3.763103$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.45175$ |
$[0, 0, 0, -368454075, -2695667977750]$ |
\(y^2=x^3-368454075x-2695667977750\) |
120.2.0.? |
$[(-274307971220266319/4897934, 17580888464562543307374321/4897934)]$ |
| 435600.rq1 |
435600rq1 |
435600.rq |
435600rq |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{37} \cdot 3^{9} \cdot 5^{7} \cdot 11^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$2.777525217$ |
$1$ |
|
$0$ |
$364953600$ |
$4.312408$ |
$14934427706187/167772160$ |
$1.02328$ |
$5.95940$ |
$[0, 0, 0, -3316086675, 72783035399250]$ |
\(y^2=x^3-3316086675x+72783035399250\) |
120.2.0.? |
$[(-2905815/7, 2676326400/7)]$ |