Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
8001.b1 |
8001b1 |
8001.b |
8001b |
$1$ |
$1$ |
\( 3^{2} \cdot 7 \cdot 127 \) |
\( 3^{3} \cdot 7^{2} \cdot 127 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$762$ |
$2$ |
$0$ |
$0.230432249$ |
$1$ |
|
$16$ |
$1216$ |
$-0.232855$ |
$147197952/6223$ |
$0.73150$ |
$2.45937$ |
$[0, 0, 1, -33, 70]$ |
\(y^2+y=x^3-33x+70\) |
762.2.0.? |
$[(2, 3), (-5, 10)]$ |
8001.g1 |
8001a1 |
8001.g |
8001a |
$1$ |
$1$ |
\( 3^{2} \cdot 7 \cdot 127 \) |
\( 3^{9} \cdot 7^{2} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$762$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3648$ |
$0.316452$ |
$147197952/6223$ |
$0.73150$ |
$3.19281$ |
$[0, 0, 1, -297, -1897]$ |
\(y^2+y=x^3-297x-1897\) |
762.2.0.? |
$[ ]$ |
56007.d1 |
56007l1 |
56007.d |
56007l |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 127 \) |
\( 3^{3} \cdot 7^{8} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$762$ |
$2$ |
$0$ |
$1.153874734$ |
$1$ |
|
$4$ |
$58368$ |
$0.740100$ |
$147197952/6223$ |
$0.73150$ |
$3.08953$ |
$[0, 0, 1, -1617, -24096]$ |
\(y^2+y=x^3-1617x-24096\) |
762.2.0.? |
$[(-21, 24)]$ |
56007.q1 |
56007k1 |
56007.q |
56007k |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 127 \) |
\( 3^{9} \cdot 7^{8} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$762$ |
$2$ |
$0$ |
$4.084368735$ |
$1$ |
|
$0$ |
$175104$ |
$1.289406$ |
$147197952/6223$ |
$0.73150$ |
$3.69244$ |
$[0, 0, 1, -14553, 650585]$ |
\(y^2+y=x^3-14553x+650585\) |
762.2.0.? |
$[(345/2, 1535/2)]$ |
128016.r1 |
128016r1 |
128016.r |
128016r |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 127 \) |
\( 2^{12} \cdot 3^{3} \cdot 7^{2} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$762$ |
$2$ |
$0$ |
$1.604879041$ |
$1$ |
|
$2$ |
$48640$ |
$0.460292$ |
$147197952/6223$ |
$0.73150$ |
$2.58683$ |
$[0, 0, 0, -528, -4496]$ |
\(y^2=x^3-528x-4496\) |
762.2.0.? |
$[(-15, 7)]$ |
128016.bc1 |
128016q1 |
128016.bc |
128016q |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 127 \) |
\( 2^{12} \cdot 3^{9} \cdot 7^{2} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$762$ |
$2$ |
$0$ |
$2.334254486$ |
$1$ |
|
$2$ |
$145920$ |
$1.009598$ |
$147197952/6223$ |
$0.73150$ |
$3.14735$ |
$[0, 0, 0, -4752, 121392]$ |
\(y^2=x^3-4752x+121392\) |
762.2.0.? |
$[(57, 189)]$ |
200025.f1 |
200025e1 |
200025.f |
200025e |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 127 \) |
\( 3^{9} \cdot 5^{6} \cdot 7^{2} \cdot 127 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$762$ |
$2$ |
$0$ |
$3.511090062$ |
$1$ |
|
$10$ |
$510720$ |
$1.121170$ |
$147197952/6223$ |
$0.73150$ |
$3.14196$ |
$[0, 0, 1, -7425, -237094]$ |
\(y^2+y=x^3-7425x-237094\) |
762.2.0.? |
$[(-51, 94), (-44, 66)]$ |
200025.ce1 |
200025cg1 |
200025.ce |
200025cg |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 127 \) |
\( 3^{3} \cdot 5^{6} \cdot 7^{2} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$762$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$170240$ |
$0.571864$ |
$147197952/6223$ |
$0.73150$ |
$2.60194$ |
$[0, 0, 1, -825, 8781]$ |
\(y^2+y=x^3-825x+8781\) |
762.2.0.? |
$[ ]$ |