| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 21090.n2 |
21090l2 |
21090.n |
21090l |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19 \cdot 37 \) |
\( 2^{10} \cdot 3^{10} \cdot 5^{2} \cdot 19^{2} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.1 |
2Cs |
$84360$ |
$48$ |
$0$ |
$0.445582709$ |
$1$ |
|
$18$ |
$83200$ |
$1.545099$ |
$1391008986004445569/747073209369600$ |
$0.96139$ |
$4.19589$ |
$[1, 0, 0, -23256, -368064]$ |
\(y^2+xy=x^3-23256x-368064\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, 2812.12.0.?, $\ldots$ |
$[(-54, 882)]$ |
| 63270.t2 |
63270o2 |
63270.t |
63270o |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 19 \cdot 37 \) |
\( 2^{10} \cdot 3^{16} \cdot 5^{2} \cdot 19^{2} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$84360$ |
$48$ |
$0$ |
$5.199519173$ |
$1$ |
|
$4$ |
$665600$ |
$2.094406$ |
$1391008986004445569/747073209369600$ |
$0.96139$ |
$4.37517$ |
$[1, -1, 0, -209304, 9937728]$ |
\(y^2+xy=x^3-x^2-209304x+9937728\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.1, 120.24.0.?, 5624.12.0.?, $\ldots$ |
$[(1731/2, 2373/2)]$ |
| 105450.j2 |
105450g2 |
105450.j |
105450g |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19 \cdot 37 \) |
\( 2^{10} \cdot 3^{10} \cdot 5^{8} \cdot 19^{2} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$84360$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$1996800$ |
$2.349819$ |
$1391008986004445569/747073209369600$ |
$0.96139$ |
$4.44693$ |
$[1, 1, 0, -581400, -46008000]$ |
\(y^2+xy=x^3+x^2-581400x-46008000\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 5624.12.0.?, $\ldots$ |
$[ ]$ |
| 168720.h2 |
168720be2 |
168720.h |
168720be |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 19 \cdot 37 \) |
\( 2^{22} \cdot 3^{10} \cdot 5^{2} \cdot 19^{2} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$84360$ |
$48$ |
$0$ |
$6.304968552$ |
$1$ |
|
$3$ |
$1996800$ |
$2.238247$ |
$1391008986004445569/747073209369600$ |
$0.96139$ |
$4.16204$ |
$[0, -1, 0, -372096, 23556096]$ |
\(y^2=x^3-x^2-372096x+23556096\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, 2812.12.0.?, $\ldots$ |
$[(6509/2, 488215/2)]$ |
| 316350.dk2 |
316350dk2 |
316350.dk |
316350dk |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 37 \) |
\( 2^{10} \cdot 3^{16} \cdot 5^{8} \cdot 19^{2} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$84360$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$15974400$ |
$2.899124$ |
$1391008986004445569/747073209369600$ |
$0.96139$ |
$4.58166$ |
$[1, -1, 1, -5232605, 1236983397]$ |
\(y^2+xy+y=x^3-x^2-5232605x+1236983397\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 5624.24.0.?, 42180.24.0.?, $\ldots$ |
$[ ]$ |
| 400710.e2 |
400710e2 |
400710.e |
400710e |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 37 \) |
\( 2^{10} \cdot 3^{10} \cdot 5^{2} \cdot 19^{8} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$84360$ |
$48$ |
$0$ |
$10.55855399$ |
$1$ |
|
$2$ |
$29952000$ |
$3.017319$ |
$1391008986004445569/747073209369600$ |
$0.96139$ |
$4.60764$ |
$[1, 1, 0, -8395423, 2507760133]$ |
\(y^2+xy=x^3+x^2-8395423x+2507760133\) |
2.6.0.a.1, 120.12.0.?, 148.12.0.?, 152.12.0.?, 1140.12.0.?, $\ldots$ |
$[(-264546/11, 137309323/11)]$ |