Learn more

Refine search


Results (44 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
1248.b2 1248.b \( 2^{5} \cdot 3 \cdot 13 \) $1$ $\Z/4\Z$ $1.748249448$ $[0, -1, 0, -369, 513]$ \(y^2=x^3-x^2-369x+513\)
1248.f2 1248.f \( 2^{5} \cdot 3 \cdot 13 \) $1$ $\Z/2\Z$ $0.390117995$ $[0, 1, 0, -369, -513]$ \(y^2=x^3+x^2-369x-513\)
2496.l4 2496.l \( 2^{6} \cdot 3 \cdot 13 \) $1$ $\Z/2\Z$ $3.748899905$ $[0, -1, 0, -92, -18]$ \(y^2=x^3-x^2-92x-18\)
2496.ba4 2496.ba \( 2^{6} \cdot 3 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -92, 18]$ \(y^2=x^3+x^2-92x+18\)
3744.l2 3744.l \( 2^{5} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.439094589$ $[0, 0, 0, -3324, -10528]$ \(y^2=x^3-3324x-10528\)
3744.o2 3744.o \( 2^{5} \cdot 3^{2} \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -3324, 10528]$ \(y^2=x^3-3324x+10528\)
7488.m4 7488.m \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -831, 1316]$ \(y^2=x^3-831x+1316\)
7488.p4 7488.p \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -831, -1316]$ \(y^2=x^3-831x-1316\)
16224.i2 16224.i \( 2^{5} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $6.766150651$ $[0, -1, 0, -62417, 877473]$ \(y^2=x^3-x^2-62417x+877473\)
16224.v2 16224.v \( 2^{5} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.774080791$ $[0, 1, 0, -62417, -877473]$ \(y^2=x^3+x^2-62417x-877473\)
31200.j2 31200.j \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -9233, -45663]$ \(y^2=x^3-x^2-9233x-45663\)
31200.cb2 31200.cb \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -9233, 45663]$ \(y^2=x^3+x^2-9233x+45663\)
32448.m4 32448.m \( 2^{6} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $6.502582872$ $[0, -1, 0, -15604, -101882]$ \(y^2=x^3-x^2-15604x-101882\)
32448.cg4 32448.cg \( 2^{6} \cdot 3 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -15604, 101882]$ \(y^2=x^3+x^2-15604x+101882\)
48672.l2 48672.l \( 2^{5} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -561756, 23130016]$ \(y^2=x^3-561756x+23130016\)
48672.r2 48672.r \( 2^{5} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.895171627$ $[0, 0, 0, -561756, -23130016]$ \(y^2=x^3-561756x-23130016\)
61152.x2 61152.x \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -18097, 139777]$ \(y^2=x^3-x^2-18097x+139777\)
61152.ca2 61152.ca \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -18097, -139777]$ \(y^2=x^3+x^2-18097x-139777\)
62400.cn4 62400.cn \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2308, 6862]$ \(y^2=x^3-x^2-2308x+6862\)
62400.fy4 62400.fy \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.972034633$ $[0, 1, 0, -2308, -6862]$ \(y^2=x^3+x^2-2308x-6862\)
93600.ch2 93600.ch \( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.064401116$ $[0, 0, 0, -83100, -1316000]$ \(y^2=x^3-83100x-1316000\)
93600.cu2 93600.cu \( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -83100, 1316000]$ \(y^2=x^3-83100x+1316000\)
97344.ew4 97344.ew \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -140439, -2891252]$ \(y^2=x^3-140439x-2891252\)
97344.fd4 97344.fd \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -140439, 2891252]$ \(y^2=x^3-140439x+2891252\)
122304.x4 122304.x \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.137907615$ $[0, -1, 0, -4524, -15210]$ \(y^2=x^3-x^2-4524x-15210\)
122304.fs4 122304.fs \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4524, 15210]$ \(y^2=x^3+x^2-4524x+15210\)
151008.g2 151008.g \( 2^{5} \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -44689, -504095]$ \(y^2=x^3-x^2-44689x-504095\)
151008.be2 151008.be \( 2^{5} \cdot 3 \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.538214525$ $[0, 1, 0, -44689, 504095]$ \(y^2=x^3+x^2-44689x+504095\)
183456.r2 183456.r \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.657008784$ $[0, 0, 0, -162876, 3611104]$ \(y^2=x^3-162876x+3611104\)
183456.bc2 183456.bc \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -162876, -3611104]$ \(y^2=x^3-162876x-3611104\)
187200.hg4 187200.hg \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.196863107$ $[0, 0, 0, -20775, 164500]$ \(y^2=x^3-20775x+164500\)
187200.jd4 187200.jd \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.315394638$ $[0, 0, 0, -20775, -164500]$ \(y^2=x^3-20775x-164500\)
302016.dg4 302016.dg \( 2^{6} \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.263436824$ $[0, -1, 0, -11172, 68598]$ \(y^2=x^3-x^2-11172x+68598\)
302016.hh4 302016.hh \( 2^{6} \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -11172, -68598]$ \(y^2=x^3+x^2-11172x-68598\)
360672.w2 360672.w \( 2^{5} \cdot 3 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -106737, -1880127]$ \(y^2=x^3-x^2-106737x-1880127\)
360672.bu2 360672.bu \( 2^{5} \cdot 3 \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $2.912097088$ $[0, 1, 0, -106737, 1880127]$ \(y^2=x^3+x^2-106737x+1880127\)
366912.mc4 366912.mc \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -40719, -451388]$ \(y^2=x^3-40719x-451388\)
366912.np4 366912.np \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -40719, 451388]$ \(y^2=x^3-40719x+451388\)
405600.cc2 405600.cc \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $13.54325435$ $[0, -1, 0, -1560433, -106563263]$ \(y^2=x^3-x^2-1560433x-106563263\)
405600.fe2 405600.fe \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.664420899$ $[0, 1, 0, -1560433, 106563263]$ \(y^2=x^3+x^2-1560433x+106563263\)
450528.f2 450528.f \( 2^{5} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.122401923$ $[0, -1, 0, -133329, 2718945]$ \(y^2=x^3-x^2-133329x+2718945\)
450528.bc2 450528.bc \( 2^{5} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.394043851$ $[0, 1, 0, -133329, -2718945]$ \(y^2=x^3+x^2-133329x-2718945\)
453024.dc2 453024.dc \( 2^{5} \cdot 3^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.475055027$ $[0, 0, 0, -402204, -14012768]$ \(y^2=x^3-402204x-14012768\)
453024.dd2 453024.dd \( 2^{5} \cdot 3^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -402204, 14012768]$ \(y^2=x^3-402204x+14012768\)
  Download to