Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
8736.k3 8736.k \( 2^{5} \cdot 3 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -42, 0]$ \(y^2=x^3-x^2-42x\) 2.6.0.a.1, 24.12.0-2.a.1.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 168.24.0.?, $\ldots$ $[ ]$
8736.x3 8736.x \( 2^{5} \cdot 3 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.759923106$ $[0, 1, 0, -42, 0]$ \(y^2=x^3+x^2-42x\) 2.6.0.a.1, 24.12.0-2.a.1.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 168.24.0.?, $\ldots$ $[(56, 420)]$
17472.l2 17472.l \( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.316085778$ $[0, -1, 0, -169, 169]$ \(y^2=x^3-x^2-169x+169\) 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.1, 104.12.0.?, 168.24.0.?, $\ldots$ $[(0, 13)]$
17472.bu2 17472.bu \( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.642165635$ $[0, 1, 0, -169, -169]$ \(y^2=x^3+x^2-169x-169\) 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.1, 104.12.0.?, 168.24.0.?, $\ldots$ $[(-5, 24)]$
26208.i3 26208.i \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.910827331$ $[0, 0, 0, -381, 380]$ \(y^2=x^3-381x+380\) 2.6.0.a.1, 8.12.0-2.a.1.1, 84.12.0.?, 156.12.0.?, 168.24.0.?, $\ldots$ $[(-8, 54), (-13, 56)]$
26208.r3 26208.r \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -381, -380]$ \(y^2=x^3-381x-380\) 2.6.0.a.1, 8.12.0-2.a.1.1, 84.12.0.?, 156.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
52416.fe2 52416.fe \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.149670597$ $[0, 0, 0, -1524, 3040]$ \(y^2=x^3-1524x+3040\) 2.6.0.a.1, 4.12.0-2.a.1.1, 168.24.0.?, 312.24.0.?, 364.24.0.?, $\ldots$ $[(77, 585)]$
52416.fi2 52416.fi \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1524, -3040]$ \(y^2=x^3-1524x-3040\) 2.6.0.a.1, 4.12.0-2.a.1.1, 168.24.0.?, 312.24.0.?, 364.24.0.?, $\ldots$ $[ ]$
61152.d3 61152.d \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.010607031$ $[0, -1, 0, -2074, -4136]$ \(y^2=x^3-x^2-2074x-4136\) 2.6.0.a.1, 4.12.0-2.a.1.1, 168.24.0.?, 312.24.0.?, 364.24.0.?, $\ldots$ $[(-5, 78)]$
61152.bl3 61152.bl \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.827017571$ $[0, 1, 0, -2074, 4136]$ \(y^2=x^3+x^2-2074x+4136\) 2.6.0.a.1, 4.12.0-2.a.1.1, 168.24.0.?, 312.24.0.?, 364.24.0.?, $\ldots$ $[(-67/2, 1485/2)]$
113568.i3 113568.i \( 2^{5} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -7154, -28536]$ \(y^2=x^3-x^2-7154x-28536\) 2.6.0.a.1, 4.12.0-2.a.1.1, 168.24.0.?, 312.24.0.?, 364.24.0.?, $\ldots$ $[ ]$
113568.bx3 113568.bx \( 2^{5} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.656556281$ $[0, 1, 0, -7154, 28536]$ \(y^2=x^3+x^2-7154x+28536\) 2.6.0.a.1, 4.12.0-2.a.1.1, 168.24.0.?, 312.24.0.?, 364.24.0.?, $\ldots$ $[(-347/2, 495/2)]$
122304.db2 122304.db \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -8297, 41385]$ \(y^2=x^3-x^2-8297x+41385\) 2.6.0.a.1, 8.12.0-2.a.1.1, 84.12.0.?, 156.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
122304.hz2 122304.hz \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.146074666$ $[0, 1, 0, -8297, -41385]$ \(y^2=x^3+x^2-8297x-41385\) 2.6.0.a.1, 8.12.0-2.a.1.1, 84.12.0.?, 156.12.0.?, 168.24.0.?, $\ldots$ $[(2361, 114660)]$
183456.cz3 183456.cz \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -18669, -130340]$ \(y^2=x^3-18669x-130340\) 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.1, 104.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
183456.dp3 183456.dp \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.464498289$ $[0, 0, 0, -18669, 130340]$ \(y^2=x^3-18669x+130340\) 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.1, 104.12.0.?, 168.24.0.?, $\ldots$ $[(-335/2, 8415/2)]$
218400.g3 218400.g \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.657427458$ $[0, -1, 0, -1058, 2112]$ \(y^2=x^3-x^2-1058x+2112\) 2.6.0.a.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, 260.12.0.?, $\ldots$ $[(58, 364)]$
218400.fo3 218400.fo \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -1058, -2112]$ \(y^2=x^3+x^2-1058x-2112\) 2.6.0.a.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, 260.12.0.?, $\ldots$ $[ ]$
227136.de2 227136.de \( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.927180706$ $[0, -1, 0, -28617, 256905]$ \(y^2=x^3-x^2-28617x+256905\) 2.6.0.a.1, 8.12.0-2.a.1.1, 84.12.0.?, 156.12.0.?, 168.24.0.?, $\ldots$ $[(177, 840)]$
227136.iu2 227136.iu \( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.799980182$ $[0, 1, 0, -28617, -256905]$ \(y^2=x^3+x^2-28617x-256905\) 2.6.0.a.1, 8.12.0-2.a.1.1, 84.12.0.?, 156.12.0.?, 168.24.0.?, $\ldots$ $[(-31649/15, 3383576/15)]$
340704.dq3 340704.dq \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -64389, -834860]$ \(y^2=x^3-64389x-834860\) 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.2, 104.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
340704.el3 340704.el \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -64389, 834860]$ \(y^2=x^3-64389x+834860\) 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.2, 104.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
366912.ct2 366912.ct \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.939986124$ $[0, 0, 0, -74676, 1042720]$ \(y^2=x^3-74676x+1042720\) 2.6.0.a.1, 24.12.0-2.a.1.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.2, 168.24.0.?, $\ldots$ $[(357, 4459)]$
366912.ep2 366912.ep \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.703224551$ $[0, 0, 0, -74676, -1042720]$ \(y^2=x^3-74676x-1042720\) 2.6.0.a.1, 24.12.0-2.a.1.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.2, 168.24.0.?, $\ldots$ $[(-70, 1960)]$
436800.ge2 436800.ge \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.645724768$ $[0, -1, 0, -4233, -12663]$ \(y^2=x^3-x^2-4233x-12663\) 2.6.0.a.1, 60.12.0-2.a.1.1, 168.12.0.?, 280.12.0.?, 312.12.0.?, $\ldots$ $[(-24, 273), (93, 624)]$
436800.of2 436800.of \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -4233, 12663]$ \(y^2=x^3+x^2-4233x+12663\) 2.6.0.a.1, 60.12.0-2.a.1.1, 168.12.0.?, 280.12.0.?, 312.12.0.?, $\ldots$ $[ ]$
  displayed columns for results