Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
25350.u1 |
25350s1 |
25350.u |
25350s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{7} \cdot 5^{8} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$161280$ |
$1.507122$ |
$125801065/34992$ |
$0.98501$ |
$4.12064$ |
$[1, 1, 0, -23325, -997875]$ |
\(y^2+xy=x^3+x^2-23325x-997875\) |
12.2.0.a.1 |
$[ ]$ |
25350.bu1 |
25350bi1 |
25350.bu |
25350bi |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{7} \cdot 5^{2} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$419328$ |
$1.984879$ |
$125801065/34992$ |
$0.98501$ |
$4.68600$ |
$[1, 0, 1, -157681, -17380972]$ |
\(y^2+xy+y=x^3-157681x-17380972\) |
12.2.0.a.1 |
$[ ]$ |
25350.by1 |
25350ck1 |
25350.by |
25350ck |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{7} \cdot 5^{8} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$4.764058885$ |
$1$ |
|
$2$ |
$2096640$ |
$2.789597$ |
$125801065/34992$ |
$0.98501$ |
$5.63828$ |
$[1, 1, 1, -3942013, -2172621469]$ |
\(y^2+xy+y=x^3+x^2-3942013x-2172621469\) |
12.2.0.a.1 |
$[(-615, 4732)]$ |
25350.cq1 |
25350da1 |
25350.cq |
25350da |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{7} \cdot 5^{2} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$0.110589713$ |
$1$ |
|
$8$ |
$32256$ |
$0.702403$ |
$125801065/34992$ |
$0.98501$ |
$3.16836$ |
$[1, 0, 0, -933, -7983]$ |
\(y^2+xy=x^3-933x-7983\) |
12.2.0.a.1 |
$[(-12, 45)]$ |
76050.e1 |
76050cx1 |
76050.e |
76050cx |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{13} \cdot 5^{8} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$10.19024803$ |
$1$ |
|
$0$ |
$16773120$ |
$3.338902$ |
$125801065/34992$ |
$0.98501$ |
$5.67364$ |
$[1, -1, 0, -35478117, 58625301541]$ |
\(y^2+xy=x^3-x^2-35478117x+58625301541\) |
12.2.0.a.1 |
$[(4630/3, 5427353/3)]$ |
76050.m1 |
76050bv1 |
76050.m |
76050bv |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{13} \cdot 5^{2} \cdot 13^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$0.498357130$ |
$1$ |
|
$16$ |
$258048$ |
$1.251709$ |
$125801065/34992$ |
$0.98501$ |
$3.44515$ |
$[1, -1, 0, -8397, 215541]$ |
\(y^2+xy=x^3-x^2-8397x+215541\) |
12.2.0.a.1 |
$[(153, 1503), (-90, 531)]$ |
76050.fx1 |
76050ez1 |
76050.fx |
76050ez |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{13} \cdot 5^{2} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$3.888791365$ |
$1$ |
|
$2$ |
$3354624$ |
$2.534184$ |
$125801065/34992$ |
$0.98501$ |
$4.81445$ |
$[1, -1, 1, -1419125, 469286237]$ |
\(y^2+xy+y=x^3-x^2-1419125x+469286237\) |
12.2.0.a.1 |
$[(1743, 56476)]$ |
76050.gh1 |
76050ga1 |
76050.gh |
76050ga |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{13} \cdot 5^{8} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1290240$ |
$2.056427$ |
$125801065/34992$ |
$0.98501$ |
$4.30435$ |
$[1, -1, 1, -209930, 26732697]$ |
\(y^2+xy+y=x^3-x^2-209930x+26732697\) |
12.2.0.a.1 |
$[ ]$ |
202800.f1 |
202800eo1 |
202800.f |
202800eo |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{16} \cdot 3^{7} \cdot 5^{2} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10063872$ |
$2.678024$ |
$125801065/34992$ |
$0.98501$ |
$4.56927$ |
$[0, -1, 0, -2522888, 1112382192]$ |
\(y^2=x^3-x^2-2522888x+1112382192\) |
12.2.0.a.1 |
$[ ]$ |
202800.fm1 |
202800gr1 |
202800.fm |
202800gr |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{16} \cdot 3^{7} \cdot 5^{2} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$774144$ |
$1.395550$ |
$125801065/34992$ |
$0.98501$ |
$3.30988$ |
$[0, -1, 0, -14928, 510912]$ |
\(y^2=x^3-x^2-14928x+510912\) |
12.2.0.a.1 |
$[ ]$ |
202800.gc1 |
202800d1 |
202800.gc |
202800d |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{16} \cdot 3^{7} \cdot 5^{8} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3870720$ |
$2.200268$ |
$125801065/34992$ |
$0.98501$ |
$4.10011$ |
$[0, 1, 0, -373208, 63117588]$ |
\(y^2=x^3+x^2-373208x+63117588\) |
12.2.0.a.1 |
$[ ]$ |
202800.jx1 |
202800bh1 |
202800.jx |
202800bh |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{16} \cdot 3^{7} \cdot 5^{8} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$50319360$ |
$3.482742$ |
$125801065/34992$ |
$0.98501$ |
$5.35950$ |
$[0, 1, 0, -63072208, 138921629588]$ |
\(y^2=x^3+x^2-63072208x+138921629588\) |
12.2.0.a.1 |
$[ ]$ |