Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
25350.u1 25350.u \( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -23325, -997875]$ \(y^2+xy=x^3+x^2-23325x-997875\) 12.2.0.a.1 $[ ]$
25350.bu1 25350.bu \( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -157681, -17380972]$ \(y^2+xy+y=x^3-157681x-17380972\) 12.2.0.a.1 $[ ]$
25350.by1 25350.by \( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.764058885$ $[1, 1, 1, -3942013, -2172621469]$ \(y^2+xy+y=x^3+x^2-3942013x-2172621469\) 12.2.0.a.1 $[(-615, 4732)]$
25350.cq1 25350.cq \( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.110589713$ $[1, 0, 0, -933, -7983]$ \(y^2+xy=x^3-933x-7983\) 12.2.0.a.1 $[(-12, 45)]$
76050.e1 76050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $10.19024803$ $[1, -1, 0, -35478117, 58625301541]$ \(y^2+xy=x^3-x^2-35478117x+58625301541\) 12.2.0.a.1 $[(4630/3, 5427353/3)]$
76050.m1 76050.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.498357130$ $[1, -1, 0, -8397, 215541]$ \(y^2+xy=x^3-x^2-8397x+215541\) 12.2.0.a.1 $[(153, 1503), (-90, 531)]$
76050.fx1 76050.fx \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.888791365$ $[1, -1, 1, -1419125, 469286237]$ \(y^2+xy+y=x^3-x^2-1419125x+469286237\) 12.2.0.a.1 $[(1743, 56476)]$
76050.gh1 76050.gh \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -209930, 26732697]$ \(y^2+xy+y=x^3-x^2-209930x+26732697\) 12.2.0.a.1 $[ ]$
202800.f1 202800.f \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -2522888, 1112382192]$ \(y^2=x^3-x^2-2522888x+1112382192\) 12.2.0.a.1 $[ ]$
202800.fm1 202800.fm \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -14928, 510912]$ \(y^2=x^3-x^2-14928x+510912\) 12.2.0.a.1 $[ ]$
202800.gc1 202800.gc \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -373208, 63117588]$ \(y^2=x^3+x^2-373208x+63117588\) 12.2.0.a.1 $[ ]$
202800.jx1 202800.jx \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -63072208, 138921629588]$ \(y^2=x^3+x^2-63072208x+138921629588\) 12.2.0.a.1 $[ ]$
  displayed columns for results