Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5244.b1 |
5244b1 |
5244.b |
5244b |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 19 \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19 \cdot 23^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.342201590$ |
$1$ |
|
$18$ |
$3456$ |
$0.468338$ |
$11509170176/7327179$ |
$1.05131$ |
$3.35226$ |
$[0, -1, 0, 299, 529]$ |
\(y^2=x^3-x^2+299x+529\) |
38.2.0.a.1 |
$[(7, 54), (115, 1242)]$ |
15732.d1 |
15732g1 |
15732.d |
15732g |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{8} \cdot 3^{12} \cdot 19 \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$1.017645$ |
$11509170176/7327179$ |
$1.05131$ |
$3.65328$ |
$[0, 0, 0, 2688, -16972]$ |
\(y^2=x^3+2688x-16972\) |
38.2.0.a.1 |
$[ ]$ |
20976.m1 |
20976n1 |
20976.m |
20976n |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 19 \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19 \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.353562664$ |
$1$ |
|
$4$ |
$13824$ |
$0.468338$ |
$11509170176/7327179$ |
$1.05131$ |
$2.88526$ |
$[0, 1, 0, 299, -529]$ |
\(y^2=x^3+x^2+299x-529\) |
38.2.0.a.1 |
$[(23, 138)]$ |
62928.bc1 |
62928bg1 |
62928.bc |
62928bg |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{8} \cdot 3^{12} \cdot 19 \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$110592$ |
$1.017645$ |
$11509170176/7327179$ |
$1.05131$ |
$3.19494$ |
$[0, 0, 0, 2688, 16972]$ |
\(y^2=x^3+2688x+16972\) |
38.2.0.a.1 |
$[ ]$ |
83904.o1 |
83904ba1 |
83904.o |
83904ba |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 19 \cdot 23 \) |
\( - 2^{14} \cdot 3^{6} \cdot 19 \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.825750216$ |
$1$ |
|
$2$ |
$110592$ |
$0.814912$ |
$11509170176/7327179$ |
$1.05131$ |
$2.89929$ |
$[0, -1, 0, 1195, -5427]$ |
\(y^2=x^3-x^2+1195x-5427\) |
38.2.0.a.1 |
$[(68, 621)]$ |
83904.bh1 |
83904n1 |
83904.bh |
83904n |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 19 \cdot 23 \) |
\( - 2^{14} \cdot 3^{6} \cdot 19 \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.875749061$ |
$1$ |
|
$2$ |
$110592$ |
$0.814912$ |
$11509170176/7327179$ |
$1.05131$ |
$2.89929$ |
$[0, 1, 0, 1195, 5427]$ |
\(y^2=x^3+x^2+1195x+5427\) |
38.2.0.a.1 |
$[(22, 207)]$ |
99636.c1 |
99636c1 |
99636.c |
99636c |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19^{7} \cdot 23^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.138251287$ |
$1$ |
|
$10$ |
$1244160$ |
$1.940557$ |
$11509170176/7327179$ |
$1.05131$ |
$4.02964$ |
$[0, 1, 0, 107819, -4275577]$ |
\(y^2=x^3+x^2+107819x-4275577\) |
38.2.0.a.1 |
$[(386, 9747), (461/2, 24909/2)]$ |
120612.c1 |
120612c1 |
120612.c |
120612c |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 19 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 19 \cdot 23^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1824768$ |
$2.036083$ |
$11509170176/7327179$ |
$1.05131$ |
$4.06181$ |
$[0, -1, 0, 157995, -7700751]$ |
\(y^2=x^3-x^2+157995x-7700751\) |
38.2.0.a.1 |
$[ ]$ |
131100.bs1 |
131100u1 |
131100.bs |
131100u |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 19 \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{6} \cdot 19 \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$483840$ |
$1.273056$ |
$11509170176/7327179$ |
$1.05131$ |
$3.25604$ |
$[0, 1, 0, 7467, 81063]$ |
\(y^2=x^3+x^2+7467x+81063\) |
38.2.0.a.1 |
$[ ]$ |
251712.bq1 |
251712bq1 |
251712.bq |
251712bq |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{14} \cdot 3^{12} \cdot 19 \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$884736$ |
$1.364218$ |
$11509170176/7327179$ |
$1.05131$ |
$3.17321$ |
$[0, 0, 0, 10752, -135776]$ |
\(y^2=x^3+10752x-135776\) |
38.2.0.a.1 |
$[ ]$ |
251712.cf1 |
251712cf1 |
251712.cf |
251712cf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \cdot 23 \) |
\( - 2^{14} \cdot 3^{12} \cdot 19 \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$6.991722385$ |
$1$ |
|
$0$ |
$884736$ |
$1.364218$ |
$11509170176/7327179$ |
$1.05131$ |
$3.17321$ |
$[0, 0, 0, 10752, 135776]$ |
\(y^2=x^3+10752x+135776\) |
38.2.0.a.1 |
$[(-535/7, 44827/7)]$ |
256956.u1 |
256956u1 |
256956.u |
256956u |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 19 \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{6} \cdot 19 \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.909736547$ |
$1$ |
|
$4$ |
$808704$ |
$1.441294$ |
$11509170176/7327179$ |
$1.05131$ |
$3.24221$ |
$[0, 1, 0, 14635, -210729]$ |
\(y^2=x^3+x^2+14635x-210729\) |
38.2.0.a.1 |
$[(25, 414)]$ |
298908.h1 |
298908h1 |
298908.h |
298908h |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{12} \cdot 19^{7} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.225473543$ |
$1$ |
|
$4$ |
$9953280$ |
$2.489864$ |
$11509170176/7327179$ |
$1.05131$ |
$4.20133$ |
$[0, 0, 0, 970368, 116410948]$ |
\(y^2=x^3+970368x+116410948\) |
38.2.0.a.1 |
$[(-76, 6498)]$ |
361836.j1 |
361836j1 |
361836.j |
361836j |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{12} \cdot 19 \cdot 23^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$9.941516537$ |
$1$ |
|
$0$ |
$14598144$ |
$2.585392$ |
$11509170176/7327179$ |
$1.05131$ |
$4.22818$ |
$[0, 0, 0, 1421952, 206498324]$ |
\(y^2=x^3+1421952x+206498324\) |
38.2.0.a.1 |
$[(-229103/74, 4911976071/74)]$ |
393300.cx1 |
393300cx1 |
393300.cx |
393300cx |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) |
\( - 2^{8} \cdot 3^{12} \cdot 5^{6} \cdot 19 \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.356403493$ |
$1$ |
|
$2$ |
$3870720$ |
$1.822363$ |
$11509170176/7327179$ |
$1.05131$ |
$3.49004$ |
$[0, 0, 0, 67200, -2121500]$ |
\(y^2=x^3+67200x-2121500\) |
38.2.0.a.1 |
$[(189, 4163)]$ |
398544.q1 |
398544q1 |
398544.q |
398544q |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19^{7} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$1.940557$ |
$11509170176/7327179$ |
$1.05131$ |
$3.59645$ |
$[0, -1, 0, 107819, 4275577]$ |
\(y^2=x^3-x^2+107819x+4275577\) |
38.2.0.a.1 |
$[ ]$ |
482448.bo1 |
482448bo1 |
482448.bo |
482448bo |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 19 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 19 \cdot 23^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.972608480$ |
$1$ |
|
$6$ |
$7299072$ |
$2.036083$ |
$11509170176/7327179$ |
$1.05131$ |
$3.63154$ |
$[0, 1, 0, 157995, 7700751]$ |
\(y^2=x^3+x^2+157995x+7700751\) |
38.2.0.a.1 |
$[(15, 3174), (1050, 36501)]$ |