Learn more

Refine search


Results (38 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
637.c2 637.c \( 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $4.797489755$ $[1, -1, 0, 628, -17823]$ \(y^2+xy=x^3-x^2+628x-17823\) 7.48.0-7.b.1.1, 52.2.0.a.1, 364.96.2.? $[(104, 1027)]$
637.d2 637.d \( 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.260963806$ $[1, -1, 0, 30763, 6051758]$ \(y^2+xy=x^3-x^2+30763x+6051758\) 7.48.0-7.b.1.2, 52.2.0.a.1, 364.96.2.? $[(-38, 2216)]$
5733.c2 5733.c \( 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 5650, 475570]$ \(y^2+xy+y=x^3-x^2+5650x+475570\) 7.24.0.b.1, 21.48.0-7.b.1.1, 52.2.0.a.1, 364.48.2.?, 1092.96.2.? $[ ]$
5733.d2 5733.d \( 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 276865, -163674332]$ \(y^2+xy+y=x^3-x^2+276865x-163674332\) 7.24.0.b.1, 21.48.0-7.b.1.2, 52.2.0.a.1, 364.48.2.?, 1092.96.2.? $[ ]$
8281.e2 8281.e \( 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 5198915, 13311309106]$ \(y^2+xy+y=x^3-x^2+5198915x+13311309106\) 7.24.0.b.1, 28.48.0-7.b.1.3, 52.2.0.a.1, 91.48.0.?, 364.96.2.? $[ ]$
8281.f2 8281.f \( 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.123682171$ $[1, -1, 1, 106100, -38838796]$ \(y^2+xy+y=x^3-x^2+106100x-38838796\) 7.24.0.b.1, 28.48.0-7.b.1.4, 52.2.0.a.1, 91.48.0.?, 364.96.2.? $[(842, 25013)]$
10192.t2 10192.t \( 2^{4} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 10045, 1130626]$ \(y^2=x^3+10045x+1130626\) 7.24.0.b.1, 28.48.0-7.b.1.2, 52.2.0.a.1, 182.48.0.?, 364.96.2.? $[ ]$
10192.u2 10192.u \( 2^{4} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 492205, -387804718]$ \(y^2=x^3+492205x-387804718\) 7.24.0.b.1, 28.48.0-7.b.1.1, 52.2.0.a.1, 182.48.0.?, 364.96.2.? $[ ]$
15925.e2 15925.e \( 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 769070, 757238822]$ \(y^2+xy+y=x^3-x^2+769070x+757238822\) 7.24.0.b.1, 35.48.0-7.b.1.1, 52.2.0.a.1, 364.48.2.?, 1820.96.2.? $[ ]$
15925.f2 15925.f \( 5^{2} \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.458181644$ $[1, -1, 1, 15695, -2212178]$ \(y^2+xy+y=x^3-x^2+15695x-2212178\) 7.24.0.b.1, 35.48.0-7.b.1.2, 52.2.0.a.1, 364.48.2.?, 1820.96.2.? $[(100, 541), (464, 10005)]$
40768.cb2 40768.cb \( 2^{6} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $17.05668953$ $[0, 0, 0, 1968820, -3102437744]$ \(y^2=x^3+1968820x-3102437744\) 7.24.0.b.1, 52.2.0.a.1, 56.48.0-7.b.1.2, 364.48.2.?, 728.96.2.? $[(100048146/293, 700161423520/293)]$
40768.cc2 40768.cc \( 2^{6} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.229380890$ $[0, 0, 0, 40180, 9045008]$ \(y^2=x^3+40180x+9045008\) 7.24.0.b.1, 52.2.0.a.1, 56.48.0-7.b.1.4, 364.48.2.?, 728.96.2.? $[(-14, 2912)]$
40768.ch2 40768.ch \( 2^{6} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1968820, 3102437744]$ \(y^2=x^3+1968820x+3102437744\) 7.24.0.b.1, 52.2.0.a.1, 56.48.0-7.b.1.1, 364.48.2.?, 728.96.2.? $[ ]$
40768.ci2 40768.ci \( 2^{6} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 40180, -9045008]$ \(y^2=x^3+40180x-9045008\) 7.24.0.b.1, 52.2.0.a.1, 56.48.0-7.b.1.3, 364.48.2.?, 728.96.2.? $[ ]$
74529.bg2 74529.bg \( 3^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 954903, 1047692582]$ \(y^2+xy=x^3-x^2+954903x+1047692582\) 7.24.0.b.1, 52.2.0.a.1, 84.48.0.?, 273.48.0.?, 364.48.2.?, $\ldots$ $[ ]$
74529.bh2 74529.bh \( 3^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $26.86304580$ $[1, -1, 0, 46790238, -359452136107]$ \(y^2+xy=x^3-x^2+46790238x-359452136107\) 7.24.0.b.1, 52.2.0.a.1, 84.48.0.?, 273.48.0.?, 364.48.2.?, $\ldots$ $[(737057619903268/380759, 5327130774682105776425/380759)]$
77077.f2 77077.f \( 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $50.44484735$ $[1, -1, 1, 3722300, -8066056820]$ \(y^2+xy+y=x^3-x^2+3722300x-8066056820\) 7.24.0.b.1, 52.2.0.a.1, 77.48.0.?, 364.48.2.?, 4004.96.2.? $[(4025149923568868011504/1561917433, 189837407437671331137097368817116/1561917433)]$
77077.g2 77077.g \( 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.650500329$ $[1, -1, 1, 75965, 23494496]$ \(y^2+xy+y=x^3-x^2+75965x+23494496\) 7.24.0.b.1, 52.2.0.a.1, 77.48.0.?, 364.48.2.?, 4004.96.2.? $[(254, 7562)]$
91728.cx2 91728.cx \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.114723560$ $[0, 0, 0, 90405, -30526902]$ \(y^2=x^3+90405x-30526902\) 7.24.0.b.1, 52.2.0.a.1, 84.48.0.?, 364.48.2.?, 546.48.0.?, $\ldots$ $[(231, 1638)]$
91728.db2 91728.db \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.674353970$ $[0, 0, 0, 4429845, 10470727386]$ \(y^2=x^3+4429845x+10470727386\) 7.24.0.b.1, 52.2.0.a.1, 84.48.0.?, 364.48.2.?, 546.48.0.?, $\ldots$ $[(-1473, 27378)]$
132496.bz2 132496.bz \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $23.04921084$ $[0, 0, 0, 83182645, -852006965446]$ \(y^2=x^3+83182645x-852006965446\) 7.24.0.b.1, 14.48.0-7.b.1.2, 52.2.0.a.1, 364.96.2.? $[(11975068750255/38639, 33200440799354707138/38639)]$
132496.ca2 132496.ca \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1697605, 2483985322]$ \(y^2=x^3+1697605x+2483985322\) 7.24.0.b.1, 14.48.0-7.b.1.1, 52.2.0.a.1, 364.96.2.? $[ ]$
143325.ez2 143325.ez \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $38.10090055$ $[1, -1, 0, 6921633, -20452369834]$ \(y^2+xy=x^3-x^2+6921633x-20452369834\) 7.24.0.b.1, 52.2.0.a.1, 105.48.0.?, 364.48.2.?, 5460.96.2.? $[(169339469883191894/2016211, 69642338859247833697910008/2016211)]$
143325.fe2 143325.fe \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.533012756$ $[1, -1, 0, 141258, 59587541]$ \(y^2+xy=x^3-x^2+141258x+59587541\) 7.24.0.b.1, 52.2.0.a.1, 105.48.0.?, 364.48.2.?, 5460.96.2.? $[(884, 29133)]$
184093.k2 184093.k \( 7^{2} \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $18.21053932$ $[1, -1, 0, 181438, -86838571]$ \(y^2+xy=x^3-x^2+181438x-86838571\) 7.24.0.b.1, 52.2.0.a.1, 119.48.0.?, 364.48.2.?, 6188.96.2.? $[(292272724/127, 4979371393163/127)]$
184093.l2 184093.l \( 7^{2} \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $18.56539558$ $[1, -1, 0, 8890453, 29767848942]$ \(y^2+xy=x^3-x^2+8890453x+29767848942\) 7.24.0.b.1, 52.2.0.a.1, 119.48.0.?, 364.48.2.?, 6188.96.2.? $[(2169937094/841, 173437325661834/841)]$
207025.ca2 207025.ca \( 5^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $15.98264640$ $[1, -1, 0, 2652508, -4852196959]$ \(y^2+xy=x^3-x^2+2652508x-4852196959\) 7.24.0.b.1, 52.2.0.a.1, 140.48.0.?, 364.48.2.?, 455.48.0.?, $\ldots$ $[(327223711/422, 5859350559529/422)]$
207025.cd2 207025.cd \( 5^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 129972883, 1664043611166]$ \(y^2+xy=x^3-x^2+129972883x+1664043611166\) 7.24.0.b.1, 52.2.0.a.1, 140.48.0.?, 364.48.2.?, 455.48.0.?, $\ldots$ $[ ]$
229957.f2 229957.f \( 7^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $37.72922707$ $[1, -1, 1, 11105375, -41564535106]$ \(y^2+xy+y=x^3-x^2+11105375x-41564535106\) 7.24.0.b.1, 52.2.0.a.1, 133.48.0.?, 364.48.2.?, 6916.96.2.? $[(11512697091954428/2095547, 674401201715051905275607/2095547)]$
229957.g2 229957.g \( 7^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.983918918$ $[1, -1, 1, 226640, 121114648]$ \(y^2+xy+y=x^3-x^2+226640x+121114648\) 7.24.0.b.1, 52.2.0.a.1, 133.48.0.?, 364.48.2.?, 6916.96.2.? $[(-176, 8791)]$
254800.eh2 254800.eh \( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $36.58713233$ $[0, 0, 0, 12305125, -48475589750]$ \(y^2=x^3+12305125x-48475589750\) 7.24.0.b.1, 52.2.0.a.1, 140.48.0.?, 364.48.2.?, 910.48.0.?, $\ldots$ $[(38618561635759785/268606, 7589329329395860299843325/268606)]$
254800.ei2 254800.ei \( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.422930116$ $[0, 0, 0, 251125, 141328250]$ \(y^2=x^3+251125x+141328250\) 7.24.0.b.1, 52.2.0.a.1, 140.48.0.?, 364.48.2.?, 910.48.0.?, $\ldots$ $[(-230, 8450)]$
336973.z2 336973.z \( 7^{2} \cdot 13 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 332113, 214859574]$ \(y^2+xy=x^3-x^2+332113x+214859574\) 7.24.0.b.1, 52.2.0.a.1, 161.48.0.?, 364.48.2.?, 8372.96.2.? $[ ]$
336973.ba2 336973.ba \( 7^{2} \cdot 13 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 16273528, -73729380943]$ \(y^2+xy=x^3-x^2+16273528x-73729380943\) 7.24.0.b.1, 52.2.0.a.1, 161.48.0.?, 364.48.2.?, 8372.96.2.? $[ ]$
366912.hk2 366912.hk \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $41.31833946$ $[0, 0, 0, 17719380, -83765819088]$ \(y^2=x^3+17719380x-83765819088\) 7.24.0.b.1, 52.2.0.a.1, 168.48.0.?, 364.48.2.?, 2184.96.2.? $[(4551636327336937848/15776377, 9899634015633447186823605780/15776377)]$
366912.hl2 366912.hl \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.534932700$ $[0, 0, 0, 361620, 244215216]$ \(y^2=x^3+361620x+244215216\) 7.24.0.b.1, 52.2.0.a.1, 168.48.0.?, 364.48.2.?, 2184.96.2.? $[(1752, 79092)]$
366912.ja2 366912.ja \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 17719380, 83765819088]$ \(y^2=x^3+17719380x+83765819088\) 7.24.0.b.1, 52.2.0.a.1, 168.48.0.?, 364.48.2.?, 2184.96.2.? $[ ]$
366912.jb2 366912.jb \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.891257564$ $[0, 0, 0, 361620, -244215216]$ \(y^2=x^3+361620x-244215216\) 7.24.0.b.1, 52.2.0.a.1, 168.48.0.?, 364.48.2.?, 2184.96.2.? $[(1290, 48672), (6202/3, 492128/3)]$
  displayed columns for results