Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
8190.e2 |
8190a1 |
8190.e |
8190a |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$0.445520153$ |
$1$ |
|
$9$ |
$1280$ |
$-0.114125$ |
$108531333/63700$ |
$0.87684$ |
$2.41918$ |
$[1, -1, 0, 30, 0]$ |
\(y^2+xy=x^3-x^2+30x\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(3, 9)]$ |
8190.bl2 |
8190be1 |
8190.bl |
8190be |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1.785304871$ |
$1$ |
|
$3$ |
$3840$ |
$0.435182$ |
$108531333/63700$ |
$0.87684$ |
$3.15072$ |
$[1, -1, 1, 268, -269]$ |
\(y^2+xy+y=x^3-x^2+268x-269\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(41, 259)]$ |
40950.bt2 |
40950k1 |
40950.bt |
40950k |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{8} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1.183066309$ |
$1$ |
|
$7$ |
$92160$ |
$1.239901$ |
$108531333/63700$ |
$0.87684$ |
$3.58251$ |
$[1, -1, 0, 6708, -26884]$ |
\(y^2+xy=x^3-x^2+6708x-26884\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(29, 423)]$ |
40950.fl2 |
40950df1 |
40950.fl |
40950df |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 7^{2} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$30720$ |
$0.690595$ |
$108531333/63700$ |
$0.87684$ |
$2.96184$ |
$[1, -1, 1, 745, 747]$ |
\(y^2+xy+y=x^3-x^2+745x+747\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
57330.cx2 |
57330k1 |
57330.cx |
57330k |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$61440$ |
$0.858830$ |
$108531333/63700$ |
$0.87684$ |
$3.05514$ |
$[1, -1, 0, 1461, -2927]$ |
\(y^2+xy=x^3-x^2+1461x-2927\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
57330.dg2 |
57330dd1 |
57330.dg |
57330dd |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{2} \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$184320$ |
$1.408136$ |
$108531333/63700$ |
$0.87684$ |
$3.65675$ |
$[1, -1, 1, 13147, 65881]$ |
\(y^2+xy+y=x^3-x^2+13147x+65881\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
65520.bb2 |
65520bx1 |
65520.bb |
65520bx |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$0.777477255$ |
$1$ |
|
$9$ |
$30720$ |
$0.579022$ |
$108531333/63700$ |
$0.87684$ |
$2.71559$ |
$[0, 0, 0, 477, -478]$ |
\(y^2=x^3+477x-478\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(31, 210)]$ |
65520.ei2 |
65520ch1 |
65520.ei |
65520ch |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$92160$ |
$1.128328$ |
$108531333/63700$ |
$0.87684$ |
$3.30996$ |
$[0, 0, 0, 4293, 12906]$ |
\(y^2=x^3+4293x+12906\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
106470.bq2 |
106470i1 |
106470.bq |
106470i |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$645120$ |
$1.717657$ |
$108531333/63700$ |
$0.87684$ |
$3.78207$ |
$[1, -1, 0, 45345, -454375]$ |
\(y^2+xy=x^3-x^2+45345x-454375\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
106470.fm2 |
106470dv1 |
106470.fm |
106470dv |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$215040$ |
$1.168350$ |
$108531333/63700$ |
$0.87684$ |
$3.21262$ |
$[1, -1, 1, 5038, 15149]$ |
\(y^2+xy+y=x^3-x^2+5038x+15149\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
262080.df2 |
262080df1 |
262080.df |
262080df |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$737280$ |
$1.474903$ |
$108531333/63700$ |
$0.87684$ |
$3.27552$ |
$[0, 0, 0, 17172, -103248]$ |
\(y^2=x^3+17172x-103248\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
262080.el2 |
262080el1 |
262080.el |
262080el |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$737280$ |
$1.474903$ |
$108531333/63700$ |
$0.87684$ |
$3.27552$ |
$[0, 0, 0, 17172, 103248]$ |
\(y^2=x^3+17172x+103248\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
262080.ho2 |
262080ho1 |
262080.ho |
262080ho |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1.412624657$ |
$1$ |
|
$5$ |
$245760$ |
$0.925596$ |
$108531333/63700$ |
$0.87684$ |
$2.74719$ |
$[0, 0, 0, 1908, 3824]$ |
\(y^2=x^3+1908x+3824\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(8, 140)]$ |
262080.nc2 |
262080nc1 |
262080.nc |
262080nc |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$2.104661097$ |
$1$ |
|
$5$ |
$245760$ |
$0.925596$ |
$108531333/63700$ |
$0.87684$ |
$2.74719$ |
$[0, 0, 0, 1908, -3824]$ |
\(y^2=x^3+1908x-3824\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(32, 300)]$ |
286650.be2 |
286650be1 |
286650.be |
286650be |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{8} \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4423680$ |
$2.212856$ |
$108531333/63700$ |
$0.87684$ |
$3.95687$ |
$[1, -1, 0, 328683, 8563841]$ |
\(y^2+xy=x^3-x^2+328683x+8563841\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
286650.pu2 |
286650pu1 |
286650.pu |
286650pu |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 7^{8} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$6.453573818$ |
$1$ |
|
$3$ |
$1474560$ |
$1.663549$ |
$108531333/63700$ |
$0.87684$ |
$3.43231$ |
$[1, -1, 1, 36520, -329353]$ |
\(y^2+xy+y=x^3-x^2+36520x-329353\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(7689, 670555)]$ |
327600.bs2 |
327600bs1 |
327600.bs |
327600bs |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{8} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1.467357477$ |
$1$ |
|
$7$ |
$737280$ |
$1.383741$ |
$108531333/63700$ |
$0.87684$ |
$3.13183$ |
$[0, 0, 0, 11925, -59750]$ |
\(y^2=x^3+11925x-59750\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(15, 350)]$ |
327600.fx2 |
327600fx1 |
327600.fx |
327600fx |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{8} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$2.255609040$ |
$1$ |
|
$5$ |
$2211840$ |
$1.933048$ |
$108531333/63700$ |
$0.87684$ |
$3.65087$ |
$[0, 0, 0, 107325, 1613250]$ |
\(y^2=x^3+107325x+1613250\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(255, 6750)]$ |
458640.ga2 |
458640ga1 |
458640.ga |
458640ga |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{2} \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4423680$ |
$2.101284$ |
$108531333/63700$ |
$0.87684$ |
$3.71151$ |
$[0, 0, 0, 210357, -4426758]$ |
\(y^2=x^3+210357x-4426758\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[ ]$ |
458640.ir2 |
458640ir1 |
458640.ir |
458640ir |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{2} \cdot 7^{8} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$3.829144724$ |
$1$ |
|
$3$ |
$1474560$ |
$1.551977$ |
$108531333/63700$ |
$0.87684$ |
$3.20586$ |
$[0, 0, 0, 23373, 163954]$ |
\(y^2=x^3+23373x+163954\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[(263, 4950)]$ |