| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 3315.b2 |
3315e2 |
3315.b |
3315e |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 5^{4} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.1 |
2Cs |
$884$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$2048$ |
$0.587588$ |
$104413920565969/2472575625$ |
$1.15696$ |
$3.98205$ |
$[1, 0, 0, -981, -11664]$ |
\(y^2+xy=x^3-981x-11664\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.2, 68.24.0-68.b.1.1, 884.48.0.? |
$[ ]$ |
$1$ |
| 9945.k2 |
9945i2 |
9945.k |
9945i |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( 3^{10} \cdot 5^{4} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2652$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$16384$ |
$1.136894$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.22290$ |
$[1, -1, 0, -8829, 314928]$ |
\(y^2+xy=x^3-x^2-8829x+314928\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 156.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 16575.f2 |
16575a2 |
16575.f |
16575a |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 5^{10} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$4420$ |
$48$ |
$0$ |
$4.619127323$ |
$1$ |
|
$2$ |
$49152$ |
$1.392307$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.31634$ |
$[1, 1, 0, -24525, -1458000]$ |
\(y^2+xy=x^3+x^2-24525x-1458000\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 260.24.0.?, $\ldots$ |
$[(-369/2, 1755/2)]$ |
$1$ |
| 43095.p2 |
43095q2 |
43095.p |
43095q |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( 3^{4} \cdot 5^{4} \cdot 13^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$884$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$344064$ |
$1.870062$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.46709$ |
$[1, 0, 1, -165793, -25460017]$ |
\(y^2+xy+y=x^3-165793x-25460017\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.2, 68.24.0-68.b.1.3, 884.48.0.? |
$[ ]$ |
$1$ |
| 49725.e2 |
49725j2 |
49725.e |
49725j |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 3^{10} \cdot 5^{10} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$13260$ |
$48$ |
$0$ |
$2.018790369$ |
$1$ |
|
$8$ |
$393216$ |
$1.941612$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.48738$ |
$[1, -1, 1, -220730, 39145272]$ |
\(y^2+xy+y=x^3-x^2-220730x+39145272\) |
2.6.0.a.1, 52.12.0.b.1, 60.12.0-2.a.1.1, 68.12.0.b.1, 780.24.0.?, $\ldots$ |
$[(188, 1971)]$ |
$1$ |
| 53040.b2 |
53040bq2 |
53040.b |
53040bq |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$884$ |
$48$ |
$0$ |
$2.464735517$ |
$1$ |
|
$27$ |
$131072$ |
$1.280735$ |
$104413920565969/2472575625$ |
$1.15696$ |
$3.73177$ |
$[0, -1, 0, -15696, 746496]$ |
\(y^2=x^3-x^2-15696x+746496\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.1, 68.24.0-68.b.1.2, 884.48.0.? |
$[(90, 234), (0, 864)]$ |
$1$ |
| 56355.f2 |
56355l2 |
56355.f |
56355l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{4} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$884$ |
$48$ |
$0$ |
$2.833145382$ |
$1$ |
|
$6$ |
$589824$ |
$2.004196$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.50468$ |
$[1, 1, 1, -283515, -57021720]$ |
\(y^2+xy+y=x^3+x^2-283515x-57021720\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.3, 68.24.0-68.b.1.1, 884.48.0.? |
$[(-287, -757)]$ |
$1$ |
| 129285.c2 |
129285t2 |
129285.c |
129285t |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( 3^{10} \cdot 5^{4} \cdot 13^{8} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2652$ |
$48$ |
$0$ |
$6.344624480$ |
$1$ |
|
$20$ |
$2752512$ |
$2.419369$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.61018$ |
$[1, -1, 1, -1492133, 687420452]$ |
\(y^2+xy+y=x^3-x^2-1492133x+687420452\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 156.24.0.?, $\ldots$ |
$[(468, 9328), (790, 703)]$ |
$1$ |
| 159120.cr2 |
159120d2 |
159120.cr |
159120d |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3^{10} \cdot 5^{4} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2652$ |
$48$ |
$0$ |
$1.619242942$ |
$1$ |
|
$15$ |
$1048576$ |
$1.830042$ |
$104413920565969/2472575625$ |
$1.15696$ |
$3.93982$ |
$[0, 0, 0, -141267, -20014126]$ |
\(y^2=x^3-141267x-20014126\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 156.24.0.?, $\ldots$ |
$[(-217, 650)]$ |
$1$ |
| 162435.v2 |
162435t2 |
162435.v |
162435t |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 5^{4} \cdot 7^{6} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$6188$ |
$48$ |
$0$ |
$0.788410796$ |
$1$ |
|
$14$ |
$589824$ |
$1.560543$ |
$104413920565969/2472575625$ |
$1.15696$ |
$3.66350$ |
$[1, 1, 1, -48070, 3952682]$ |
\(y^2+xy+y=x^3+x^2-48070x+3952682\) |
2.6.0.a.1, 28.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 364.24.0.?, $\ldots$ |
$[(-8, 2086)]$ |
$1$ |
| 169065.u2 |
169065bb2 |
169065.u |
169065bb |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 3^{10} \cdot 5^{4} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2652$ |
$48$ |
$0$ |
$7.185831433$ |
$1$ |
|
$2$ |
$4718592$ |
$2.553501$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.64115$ |
$[1, -1, 0, -2551635, 1537034800]$ |
\(y^2+xy=x^3-x^2-2551635x+1537034800\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 156.24.0.?, $\ldots$ |
$[(25485/4, 2437555/4)]$ |
$1$ |
| 212160.dq2 |
212160gx2 |
212160.dq |
212160gx |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{18} \cdot 3^{4} \cdot 5^{4} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$1768$ |
$48$ |
$0$ |
$3.709016727$ |
$1$ |
|
$7$ |
$1048576$ |
$1.627308$ |
$104413920565969/2472575625$ |
$1.15696$ |
$3.64906$ |
$[0, -1, 0, -62785, -5909183]$ |
\(y^2=x^3-x^2-62785x-5909183\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 104.24.0.?, $\ldots$ |
$[(-152, 315)]$ |
$1$ |
| 212160.gc2 |
212160f2 |
212160.gc |
212160f |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{18} \cdot 3^{4} \cdot 5^{4} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$1768$ |
$48$ |
$0$ |
$0.989117169$ |
$1$ |
|
$13$ |
$1048576$ |
$1.627308$ |
$104413920565969/2472575625$ |
$1.15696$ |
$3.64906$ |
$[0, 1, 0, -62785, 5909183]$ |
\(y^2=x^3+x^2-62785x+5909183\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 104.24.0.?, $\ldots$ |
$[(191, 960)]$ |
$1$ |
| 215475.p2 |
215475w2 |
215475.p |
215475w |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 3^{4} \cdot 5^{10} \cdot 13^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$4420$ |
$48$ |
$0$ |
$9.004979366$ |
$1$ |
|
$2$ |
$8257536$ |
$2.674782$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.66799$ |
$[1, 1, 1, -4144813, -3182502094]$ |
\(y^2+xy+y=x^3+x^2-4144813x-3182502094\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 260.24.0.?, $\ldots$ |
$[(-27811/5, 981453/5)]$ |
$1$ |
| 265200.gx2 |
265200gx2 |
265200.gx |
265200gx |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{10} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$4420$ |
$48$ |
$0$ |
$2.310961663$ |
$1$ |
|
$9$ |
$3145728$ |
$2.085453$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.02409$ |
$[0, 1, 0, -392408, 92527188]$ |
\(y^2=x^3+x^2-392408x+92527188\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 260.24.0.?, $\ldots$ |
$[(454, 2856)]$ |
$1$ |
| 281775.cf2 |
281775cf2 |
281775.cf |
281775cf |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{10} \cdot 13^{2} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$4420$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$2$ |
$14155776$ |
$2.808914$ |
$104413920565969/2472575625$ |
$1.15696$ |
$4.69646$ |
$[1, 0, 1, -7087876, -7113539227]$ |
\(y^2+xy+y=x^3-7087876x-7113539227\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 260.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 401115.bp2 |
401115bp2 |
401115.bp |
401115bp |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 5^{4} \cdot 11^{6} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$9724$ |
$48$ |
$0$ |
$2.132434439$ |
$1$ |
|
$6$ |
$2949120$ |
$1.786535$ |
$104413920565969/2472575625$ |
$1.15696$ |
$3.61702$ |
$[1, 0, 1, -118704, 15406081]$ |
\(y^2+xy+y=x^3-118704x+15406081\) |
2.6.0.a.1, 44.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 572.24.0.?, $\ldots$ |
$[(-97, 5148)]$ |
$1$ |
| 487305.cx2 |
487305cx2 |
487305.cx |
487305cx |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{10} \cdot 5^{4} \cdot 7^{6} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$18564$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$4718592$ |
$2.109848$ |
$104413920565969/2472575625$ |
$1.15696$ |
$3.85950$ |
$[1, -1, 0, -432630, -107155049]$ |
\(y^2+xy=x^3-x^2-432630x-107155049\) |
2.6.0.a.1, 52.12.0.b.1, 68.12.0.b.1, 84.12.0.?, 884.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |