Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
3315.b2 3315.b \( 3 \cdot 5 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -981, -11664]$ \(y^2+xy=x^3-981x-11664\) 2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.2, 68.24.0-68.b.1.1, 884.48.0.? $[ ]$
9945.k2 9945.k \( 3^{2} \cdot 5 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -8829, 314928]$ \(y^2+xy=x^3-x^2-8829x+314928\) 2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 156.24.0.?, $\ldots$ $[ ]$
16575.f2 16575.f \( 3 \cdot 5^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.619127323$ $[1, 1, 0, -24525, -1458000]$ \(y^2+xy=x^3+x^2-24525x-1458000\) 2.6.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 260.24.0.?, $\ldots$ $[(-369/2, 1755/2)]$
43095.p2 43095.p \( 3 \cdot 5 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -165793, -25460017]$ \(y^2+xy+y=x^3-165793x-25460017\) 2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.2, 68.24.0-68.b.1.3, 884.48.0.? $[ ]$
49725.e2 49725.e \( 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.018790369$ $[1, -1, 1, -220730, 39145272]$ \(y^2+xy+y=x^3-x^2-220730x+39145272\) 2.6.0.a.1, 52.12.0.b.1, 60.12.0-2.a.1.1, 68.12.0.b.1, 780.24.0.?, $\ldots$ $[(188, 1971)]$
53040.b2 53040.b \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.464735517$ $[0, -1, 0, -15696, 746496]$ \(y^2=x^3-x^2-15696x+746496\) 2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.1, 68.24.0-68.b.1.2, 884.48.0.? $[(90, 234), (0, 864)]$
56355.f2 56355.f \( 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.833145382$ $[1, 1, 1, -283515, -57021720]$ \(y^2+xy+y=x^3+x^2-283515x-57021720\) 2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.3, 68.24.0-68.b.1.1, 884.48.0.? $[(-287, -757)]$
129285.c2 129285.c \( 3^{2} \cdot 5 \cdot 13^{2} \cdot 17 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $6.344624480$ $[1, -1, 1, -1492133, 687420452]$ \(y^2+xy+y=x^3-x^2-1492133x+687420452\) 2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 156.24.0.?, $\ldots$ $[(468, 9328), (790, 703)]$
159120.cr2 159120.cr \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.619242942$ $[0, 0, 0, -141267, -20014126]$ \(y^2=x^3-141267x-20014126\) 2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 156.24.0.?, $\ldots$ $[(-217, 650)]$
162435.v2 162435.v \( 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.788410796$ $[1, 1, 1, -48070, 3952682]$ \(y^2+xy+y=x^3+x^2-48070x+3952682\) 2.6.0.a.1, 28.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 364.24.0.?, $\ldots$ $[(-8, 2086)]$
169065.u2 169065.u \( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.185831433$ $[1, -1, 0, -2551635, 1537034800]$ \(y^2+xy=x^3-x^2-2551635x+1537034800\) 2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 156.24.0.?, $\ldots$ $[(25485/4, 2437555/4)]$
212160.dq2 212160.dq \( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.709016727$ $[0, -1, 0, -62785, -5909183]$ \(y^2=x^3-x^2-62785x-5909183\) 2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 104.24.0.?, $\ldots$ $[(-152, 315)]$
212160.gc2 212160.gc \( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.989117169$ $[0, 1, 0, -62785, 5909183]$ \(y^2=x^3+x^2-62785x+5909183\) 2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 104.24.0.?, $\ldots$ $[(191, 960)]$
215475.p2 215475.p \( 3 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $9.004979366$ $[1, 1, 1, -4144813, -3182502094]$ \(y^2+xy+y=x^3+x^2-4144813x-3182502094\) 2.6.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 260.24.0.?, $\ldots$ $[(-27811/5, 981453/5)]$
265200.gx2 265200.gx \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.310961663$ $[0, 1, 0, -392408, 92527188]$ \(y^2=x^3+x^2-392408x+92527188\) 2.6.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 260.24.0.?, $\ldots$ $[(454, 2856)]$
281775.cf2 281775.cf \( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -7087876, -7113539227]$ \(y^2+xy+y=x^3-7087876x-7113539227\) 2.6.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 260.24.0.?, $\ldots$ $[ ]$
401115.bp2 401115.bp \( 3 \cdot 5 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.132434439$ $[1, 0, 1, -118704, 15406081]$ \(y^2+xy+y=x^3-118704x+15406081\) 2.6.0.a.1, 44.12.0-2.a.1.1, 52.12.0.b.1, 68.12.0.b.1, 572.24.0.?, $\ldots$ $[(-97, 5148)]$
487305.cx2 487305.cx \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -432630, -107155049]$ \(y^2+xy=x^3-x^2-432630x-107155049\) 2.6.0.a.1, 52.12.0.b.1, 68.12.0.b.1, 84.12.0.?, 884.24.0.?, $\ldots$ $[ ]$
  displayed columns for results