| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 13260.g1 |
13260f1 |
13260.g |
13260f |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{2} \cdot 13^{5} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$6.124099105$ |
$1$ |
|
$3$ |
$491520$ |
$2.680634$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.87444$ |
$[0, -1, 0, -2462065, -986601350]$ |
\(y^2=x^3-x^2-2462065x-986601350\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ |
$[(-1275, 8845)]$ |
| 39780.j1 |
39780n1 |
39780.j |
39780n |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{22} \cdot 5^{2} \cdot 13^{5} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$3932160$ |
$3.229939$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.88746$ |
$[0, 0, 0, -22158588, 26660395037]$ |
\(y^2=x^3-22158588x+26660395037\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[ ]$ |
| 53040.co1 |
53040cr1 |
53040.co |
53040cr |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{2} \cdot 13^{5} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1966080$ |
$2.680634$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.12585$ |
$[0, 1, 0, -2462065, 986601350]$ |
\(y^2=x^3+x^2-2462065x+986601350\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ |
$[ ]$ |
| 66300.bb1 |
66300bh1 |
66300.bb |
66300bh |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{8} \cdot 13^{5} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$0.848801503$ |
$1$ |
|
$7$ |
$11796480$ |
$3.485352$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.89264$ |
$[0, 1, 0, -61551633, -123448272012]$ |
\(y^2=x^3+x^2-61551633x-123448272012\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[(14352, 1396278)]$ |
| 159120.o1 |
159120bi1 |
159120.o |
159120bi |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{22} \cdot 5^{2} \cdot 13^{5} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$15728640$ |
$3.229939$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.20603$ |
$[0, 0, 0, -22158588, -26660395037]$ |
\(y^2=x^3-22158588x-26660395037\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[ ]$ |
| 172380.d1 |
172380be1 |
172380.d |
172380be |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{2} \cdot 13^{11} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$82575360$ |
$3.963108$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.90115$ |
$[0, -1, 0, -416089041, -2169227522034]$ |
\(y^2=x^3-x^2-416089041x-2169227522034\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ |
$[ ]$ |
| 198900.x1 |
198900bj1 |
198900.x |
198900bj |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{22} \cdot 5^{8} \cdot 13^{5} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$94371840$ |
$4.034660$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.90231$ |
$[0, 0, 0, -553964700, 3332549379625]$ |
\(y^2=x^3-553964700x+3332549379625\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[ ]$ |
| 212160.l1 |
212160dk1 |
212160.l |
212160dk |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{16} \cdot 5^{2} \cdot 13^{5} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$2.076003043$ |
$1$ |
|
$5$ |
$15728640$ |
$3.027206$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$4.88557$ |
$[0, -1, 0, -9848261, 7902659061]$ |
\(y^2=x^3-x^2-9848261x+7902659061\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ |
$[(580, 48841)]$ |
| 212160.fj1 |
212160fv1 |
212160.fj |
212160fv |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{16} \cdot 5^{2} \cdot 13^{5} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$0.693642581$ |
$1$ |
|
$5$ |
$15728640$ |
$3.027206$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$4.88557$ |
$[0, 1, 0, -9848261, -7902659061]$ |
\(y^2=x^3+x^2-9848261x-7902659061\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ |
$[(-1841, 63180)]$ |
| 225420.z1 |
225420n1 |
225420.z |
225420n |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{2} \cdot 13^{5} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$520$ |
$48$ |
$0$ |
$3.070122080$ |
$1$ |
|
$7$ |
$141557760$ |
$4.097244$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.90330$ |
$[0, 1, 0, -711536881, -4851441653656]$ |
\(y^2=x^3+x^2-711536881x-4851441653656\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
$[(29795, 632043)]$ |
| 265200.cw1 |
265200cw1 |
265200.cw |
265200cw |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{8} \cdot 13^{5} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$47185920$ |
$3.485352$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.23851$ |
$[0, -1, 0, -61551633, 123448272012]$ |
\(y^2=x^3-x^2-61551633x+123448272012\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[ ]$ |