| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 43680.y3 |
43680bq1 |
43680.y |
43680bq |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$1.079327091$ |
$1$ |
|
$11$ |
$24576$ |
$0.513090$ |
$102766285504/46580625$ |
$0.99302$ |
$2.76234$ |
$[0, -1, 0, -390, 1512]$ |
\(y^2=x^3-x^2-390x+1512\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 56.24.0-56.a.1.4, 156.24.0.?, 2184.48.0.? |
$[(-6, 60)]$ |
$1$ |
| 43680.cd3 |
43680ce1 |
43680.cd |
43680ce |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$1.733267475$ |
$1$ |
|
$7$ |
$24576$ |
$0.513090$ |
$102766285504/46580625$ |
$0.99302$ |
$2.76234$ |
$[0, 1, 0, -390, -1512]$ |
\(y^2=x^3+x^2-390x-1512\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 56.24.0-56.a.1.1, 156.24.0.?, 2184.48.0.? |
$[(36, 180)]$ |
$1$ |
| 87360.k2 |
87360dv2 |
87360.k |
87360dv |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$2.758780267$ |
$1$ |
|
$25$ |
$98304$ |
$0.859664$ |
$102766285504/46580625$ |
$0.99302$ |
$2.95958$ |
$[0, -1, 0, -1561, -10535]$ |
\(y^2=x^3-x^2-1561x-10535\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 28.12.0-2.a.1.1, 56.24.0-56.a.1.2, 156.12.0.?, $\ldots$ |
$[(-9, 52), (56, 273)]$ |
$1$ |
| 87360.ev2 |
87360ga2 |
87360.ev |
87360ga |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$98304$ |
$0.859664$ |
$102766285504/46580625$ |
$0.99302$ |
$2.95958$ |
$[0, 1, 0, -1561, 10535]$ |
\(y^2=x^3+x^2-1561x+10535\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 28.12.0-2.a.1.1, 56.24.0-56.a.1.3, 156.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 131040.r3 |
131040dl1 |
131040.r |
131040dl |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$2.326111880$ |
$1$ |
|
$7$ |
$196608$ |
$1.062397$ |
$102766285504/46580625$ |
$0.99302$ |
$3.06420$ |
$[0, 0, 0, -3513, 37312]$ |
\(y^2=x^3-3513x+37312\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0-2.a.1.1, 56.12.0.a.1, 156.24.0.?, $\ldots$ |
$[(92, 702)]$ |
$1$ |
| 131040.ca3 |
131040cy1 |
131040.ca |
131040cy |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$196608$ |
$1.062397$ |
$102766285504/46580625$ |
$0.99302$ |
$3.06420$ |
$[0, 0, 0, -3513, -37312]$ |
\(y^2=x^3-3513x-37312\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0-2.a.1.1, 56.12.0.a.1, 156.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 218400.ca3 |
218400fc1 |
218400.ca |
218400fc |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{10} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$589824$ |
$1.317808$ |
$102766285504/46580625$ |
$0.99302$ |
$3.18619$ |
$[0, -1, 0, -9758, -169488]$ |
\(y^2=x^3-x^2-9758x-169488\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 56.12.0.a.1, 156.12.0.?, 280.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 218400.do3 |
218400dz1 |
218400.do |
218400dz |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{10} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$589824$ |
$1.317808$ |
$102766285504/46580625$ |
$0.99302$ |
$3.18619$ |
$[0, 1, 0, -9758, 169488]$ |
\(y^2=x^3+x^2-9758x+169488\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 56.12.0.a.1, 156.12.0.?, 280.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 262080.ir2 |
262080ir2 |
262080.ir |
262080ir |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$1.853001571$ |
$1$ |
|
$33$ |
$786432$ |
$1.408970$ |
$102766285504/46580625$ |
$0.99302$ |
$3.22730$ |
$[0, 0, 0, -14052, 298496]$ |
\(y^2=x^3-14052x+298496\) |
2.6.0.a.1, 24.12.0-2.a.1.1, 56.12.0.a.1, 84.12.0.?, 104.12.0.?, $\ldots$ |
$[(2, 520), (-20, 756)]$ |
$1$ |
| 262080.lt2 |
262080lt2 |
262080.lt |
262080lt |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$1.260759298$ |
$1$ |
|
$13$ |
$786432$ |
$1.408970$ |
$102766285504/46580625$ |
$0.99302$ |
$3.22730$ |
$[0, 0, 0, -14052, -298496]$ |
\(y^2=x^3-14052x-298496\) |
2.6.0.a.1, 24.12.0-2.a.1.1, 56.12.0.a.1, 84.12.0.?, 104.12.0.?, $\ldots$ |
$[(-67, 585)]$ |
$1$ |
| 305760.x3 |
305760x1 |
305760.x |
305760x |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$2.985631093$ |
$1$ |
|
$7$ |
$1179648$ |
$1.486046$ |
$102766285504/46580625$ |
$0.99302$ |
$3.26114$ |
$[0, -1, 0, -19126, 480376]$ |
\(y^2=x^3-x^2-19126x+480376\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 28.12.0-2.a.1.1, 56.24.0-56.a.1.2, 156.12.0.?, $\ldots$ |
$[(-100, 1176)]$ |
$1$ |
| 305760.ev3 |
305760ev1 |
305760.ev |
305760ev |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$1179648$ |
$1.486046$ |
$102766285504/46580625$ |
$0.99302$ |
$3.26114$ |
$[0, 1, 0, -19126, -480376]$ |
\(y^2=x^3+x^2-19126x-480376\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 28.12.0-2.a.1.1, 56.24.0-56.a.1.3, 156.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 436800.de2 |
436800de2 |
436800.de |
436800de |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{10} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$10920$ |
$48$ |
$0$ |
$2.410089028$ |
$1$ |
|
$9$ |
$2359296$ |
$1.664383$ |
$102766285504/46580625$ |
$0.99302$ |
$3.33636$ |
$[0, -1, 0, -39033, 1394937]$ |
\(y^2=x^3-x^2-39033x+1394937\) |
2.6.0.a.1, 40.12.0-2.a.1.1, 56.12.0.a.1, 140.12.0.?, 156.12.0.?, $\ldots$ |
$[(27, 600)]$ |
$1$ |
| 436800.sb2 |
436800sb2 |
436800.sb |
436800sb |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{10} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$10920$ |
$48$ |
$0$ |
$4.298937823$ |
$1$ |
|
$5$ |
$2359296$ |
$1.664383$ |
$102766285504/46580625$ |
$0.99302$ |
$3.33636$ |
$[0, 1, 0, -39033, -1394937]$ |
\(y^2=x^3+x^2-39033x-1394937\) |
2.6.0.a.1, 40.12.0-2.a.1.1, 56.12.0.a.1, 140.12.0.?, 156.12.0.?, $\ldots$ |
$[(1173, 39600)]$ |
$1$ |