Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
8736.k4 8736.k \( 2^{5} \cdot 3 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 168, -168]$ \(y^2=x^3-x^2+168x-168\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 28.12.0-4.c.1.1, 104.12.0.?, $\ldots$ $[ ]$
8736.x4 8736.x \( 2^{5} \cdot 3 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $5.519846213$ $[0, 1, 0, 168, 168]$ \(y^2=x^3+x^2+168x+168\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 28.12.0-4.c.1.2, 104.12.0.?, $\ldots$ $[(221/2, 3405/2)]$
17472.l4 17472.l \( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.632171556$ $[0, -1, 0, 671, 673]$ \(y^2=x^3-x^2+671x+673\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0-4.c.1.1, 104.12.0.?, $\ldots$ $[(3, 52)]$
17472.bu4 17472.bu \( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $3.284331270$ $[0, 1, 0, 671, -673]$ \(y^2=x^3+x^2+671x-673\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.2, 104.12.0.?, $\ldots$ $[(37, 276)]$
26208.i4 26208.i \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $11.64330932$ $[0, 0, 0, 1509, 3026]$ \(y^2=x^3+1509x+3026\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 84.12.0.?, 168.24.0.?, $\ldots$ $[(34, 306), (14, 164)]$
26208.r4 26208.r \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1509, -3026]$ \(y^2=x^3+1509x-3026\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 84.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
52416.fe4 52416.fe \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/4\Z$ $4.299341195$ $[0, 0, 0, 6036, 24208]$ \(y^2=x^3+6036x+24208\) 2.3.0.a.1, 4.12.0-4.c.1.1, 168.24.0.?, 312.24.0.?, 728.24.0.?, $\ldots$ $[(96, 1220)]$
52416.fi4 52416.fi \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 6036, -24208]$ \(y^2=x^3+6036x-24208\) 2.3.0.a.1, 4.12.0-4.c.1.2, 168.24.0.?, 312.24.0.?, 728.24.0.?, $\ldots$ $[ ]$
61152.d4 61152.d \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/4\Z$ $4.021214062$ $[0, -1, 0, 8216, -41180]$ \(y^2=x^3-x^2+8216x-41180\) 2.3.0.a.1, 4.12.0-4.c.1.1, 168.24.0.?, 312.24.0.?, 728.24.0.?, $\ldots$ $[(681, 17914)]$
61152.bl4 61152.bl \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $9.654035142$ $[0, 1, 0, 8216, 41180]$ \(y^2=x^3+x^2+8216x+41180\) 2.3.0.a.1, 4.12.0-4.c.1.2, 168.24.0.?, 312.24.0.?, 728.24.0.?, $\ldots$ $[(9301/10, 1272249/10)]$
113568.i4 113568.i \( 2^{5} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 28336, -255672]$ \(y^2=x^3-x^2+28336x-255672\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 168.24.0.?, 312.24.0.?, $\ldots$ $[ ]$
113568.bx4 113568.bx \( 2^{5} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $11.31311256$ $[0, 1, 0, 28336, 255672]$ \(y^2=x^3+x^2+28336x+255672\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 168.24.0.?, 312.24.0.?, $\ldots$ $[(-4131/22, 1226685/22)]$
122304.db4 122304.db \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 32863, 296577]$ \(y^2=x^3-x^2+32863x+296577\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 84.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
122304.hz4 122304.hz \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $10.29214933$ $[0, 1, 0, 32863, -296577]$ \(y^2=x^3+x^2+32863x-296577\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 84.12.0.?, 168.24.0.?, $\ldots$ $[(46786/45, 62840791/45)]$
183456.cz4 183456.cz \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 73941, -1037918]$ \(y^2=x^3+73941x-1037918\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0-4.c.1.1, 104.12.0.?, $\ldots$ $[ ]$
183456.dp4 183456.dp \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.732249144$ $[0, 0, 0, 73941, 1037918]$ \(y^2=x^3+73941x+1037918\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.2, 104.12.0.?, $\ldots$ $[(2261, 108290)]$
218400.g4 218400.g \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $3.314854916$ $[0, -1, 0, 4192, 12612]$ \(y^2=x^3-x^2+4192x+12612\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, $\ldots$ $[(97, 1150)]$
218400.fo4 218400.fo \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 4192, -12612]$ \(y^2=x^3+x^2+4192x-12612\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, $\ldots$ $[ ]$
227136.de4 227136.de \( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $5.854361412$ $[0, -1, 0, 113343, 1932033]$ \(y^2=x^3-x^2+113343x+1932033\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 156.12.0.?, 168.24.0.?, $\ldots$ $[(8, 1685)]$
227136.iu4 227136.iu \( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $17.59996036$ $[0, 1, 0, 113343, -1932033]$ \(y^2=x^3+x^2+113343x-1932033\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 156.12.0.?, 168.24.0.?, $\ldots$ $[(8924554/345, 108594849817/345)]$
340704.dq4 340704.dq \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 255021, -6648122]$ \(y^2=x^3+255021x-6648122\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 56.12.0-4.c.1.6, 104.12.0.?, $\ldots$ $[ ]$
340704.el4 340704.el \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 255021, 6648122]$ \(y^2=x^3+255021x+6648122\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 56.12.0-4.c.1.6, 104.12.0.?, $\ldots$ $[ ]$
366912.ct4 366912.ct \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.969993062$ $[0, 0, 0, 295764, 8303344]$ \(y^2=x^3+295764x+8303344\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 28.12.0-4.c.1.1, 104.12.0.?, $\ldots$ $[(14, 3528)]$
366912.ep4 366912.ep \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.406449102$ $[0, 0, 0, 295764, -8303344]$ \(y^2=x^3+295764x-8303344\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 28.12.0-4.c.1.2, 104.12.0.?, $\ldots$ $[(1253, 48265)]$
436800.ge4 436800.ge \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $10.58289907$ $[0, -1, 0, 16767, -117663]$ \(y^2=x^3-x^2+16767x-117663\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 168.12.0.?, 280.12.0.?, $\ldots$ $[(176, 2873), (407, 8600)]$
436800.of4 436800.of \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 16767, 117663]$ \(y^2=x^3+x^2+16767x+117663\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 168.12.0.?, 280.12.0.?, $\ldots$ $[ ]$
  displayed columns for results