Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
3950.c1 |
3950e1 |
3950.c |
3950e |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{10} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9480$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3480$ |
$0.631427$ |
$-9725425/632$ |
$0.80343$ |
$3.89919$ |
$[1, 1, 0, -950, 11500]$ |
\(y^2+xy=x^3+x^2-950x+11500\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 632.2.0.?, 1896.8.0.?, 9480.16.0.? |
$[ ]$ |
3950.h1 |
3950j1 |
3950.h |
3950j |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{4} \cdot 79 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1896$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$696$ |
$-0.173292$ |
$-9725425/632$ |
$0.80343$ |
$2.73314$ |
$[1, 0, 0, -38, 92]$ |
\(y^2+xy=x^3-38x+92\) |
3.8.0-3.a.1.2, 632.2.0.?, 1896.16.0.? |
$[ ]$ |
31600.m1 |
31600x1 |
31600.m |
31600x |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 79 \) |
\( - 2^{15} \cdot 5^{4} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1896$ |
$16$ |
$0$ |
$0.851159336$ |
$1$ |
|
$4$ |
$16704$ |
$0.519855$ |
$-9725425/632$ |
$0.80343$ |
$2.98740$ |
$[0, -1, 0, -608, -5888]$ |
\(y^2=x^3-x^2-608x-5888\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 632.2.0.?, 1896.16.0.? |
$[(32, 80)]$ |
31600.r1 |
31600h1 |
31600.r |
31600h |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 79 \) |
\( - 2^{15} \cdot 5^{10} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9480$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$83520$ |
$1.324574$ |
$-9725425/632$ |
$0.80343$ |
$3.91943$ |
$[0, 1, 0, -15208, -766412]$ |
\(y^2=x^3+x^2-15208x-766412\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 632.2.0.?, 1896.8.0.?, 9480.16.0.? |
$[ ]$ |
35550.b1 |
35550z1 |
35550.b |
35550z |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 79 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{4} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1896$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20880$ |
$0.376014$ |
$-9725425/632$ |
$0.80343$ |
$2.78910$ |
$[1, -1, 0, -342, -2484]$ |
\(y^2+xy=x^3-x^2-342x-2484\) |
3.8.0-3.a.1.1, 632.2.0.?, 1896.16.0.? |
$[ ]$ |
35550.cf1 |
35550ca1 |
35550.cf |
35550ca |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 79 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{10} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9480$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$104400$ |
$1.180733$ |
$-9725425/632$ |
$0.80343$ |
$3.71065$ |
$[1, -1, 1, -8555, -319053]$ |
\(y^2+xy+y=x^3-x^2-8555x-319053\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 632.2.0.?, 1896.8.0.?, 9480.16.0.? |
$[ ]$ |
126400.o1 |
126400bm1 |
126400.o |
126400bm |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 79 \) |
\( - 2^{21} \cdot 5^{10} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9480$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$668160$ |
$1.671148$ |
$-9725425/632$ |
$0.80343$ |
$3.81092$ |
$[0, -1, 0, -60833, -6070463]$ |
\(y^2=x^3-x^2-60833x-6070463\) |
3.4.0.a.1, 120.8.0.?, 632.2.0.?, 1896.8.0.?, 4740.8.0.?, $\ldots$ |
$[ ]$ |
126400.p1 |
126400bf1 |
126400.p |
126400bf |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 79 \) |
\( - 2^{21} \cdot 5^{4} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1896$ |
$16$ |
$0$ |
$0.885870911$ |
$1$ |
|
$4$ |
$133632$ |
$0.866428$ |
$-9725425/632$ |
$0.80343$ |
$2.98889$ |
$[0, -1, 0, -2433, 49537]$ |
\(y^2=x^3-x^2-2433x+49537\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 474.8.0.?, 632.2.0.?, 1896.16.0.? |
$[(33, 64)]$ |
126400.ce1 |
126400t1 |
126400.ce |
126400t |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 79 \) |
\( - 2^{21} \cdot 5^{10} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9480$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$668160$ |
$1.671148$ |
$-9725425/632$ |
$0.80343$ |
$3.81092$ |
$[0, 1, 0, -60833, 6070463]$ |
\(y^2=x^3+x^2-60833x+6070463\) |
3.4.0.a.1, 120.8.0.?, 632.2.0.?, 1896.8.0.?, 2370.8.0.?, $\ldots$ |
$[ ]$ |
126400.cf1 |
126400cl1 |
126400.cf |
126400cl |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 79 \) |
\( - 2^{21} \cdot 5^{4} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1896$ |
$16$ |
$0$ |
$8.320502419$ |
$1$ |
|
$0$ |
$133632$ |
$0.866428$ |
$-9725425/632$ |
$0.80343$ |
$2.98889$ |
$[0, 1, 0, -2433, -49537]$ |
\(y^2=x^3+x^2-2433x-49537\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 632.2.0.?, 948.8.0.?, 1896.16.0.? |
$[(37039/25, 2091712/25)]$ |
193550.ba1 |
193550cy1 |
193550.ba |
193550cy |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{10} \cdot 7^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$66360$ |
$16$ |
$0$ |
$15.41238319$ |
$1$ |
|
$0$ |
$1002240$ |
$1.604382$ |
$-9725425/632$ |
$0.80343$ |
$3.61172$ |
$[1, 0, 1, -46576, -4084202]$ |
\(y^2+xy+y=x^3-46576x-4084202\) |
3.4.0.a.1, 105.8.0.?, 632.2.0.?, 1896.8.0.?, 66360.16.0.? |
$[(28574879/218, 137938790669/218)]$ |
193550.bz1 |
193550m1 |
193550.bz |
193550m |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{4} \cdot 7^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$13272$ |
$16$ |
$0$ |
$3.763009680$ |
$1$ |
|
$0$ |
$200448$ |
$0.799664$ |
$-9725425/632$ |
$0.80343$ |
$2.81846$ |
$[1, 1, 1, -1863, -33419]$ |
\(y^2+xy+y=x^3+x^2-1863x-33419\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 632.2.0.?, 1896.8.0.?, 13272.16.0.? |
$[(199/2, -105/2)]$ |
284400.r1 |
284400r1 |
284400.r |
284400r |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 79 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{10} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9480$ |
$16$ |
$0$ |
$3.651207287$ |
$1$ |
|
$2$ |
$2505600$ |
$1.873880$ |
$-9725425/632$ |
$0.80343$ |
$3.75856$ |
$[0, 0, 0, -136875, 20556250]$ |
\(y^2=x^3-136875x+20556250\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 632.2.0.?, 1896.8.0.?, 9480.16.0.? |
$[(261, 1616)]$ |
284400.gd1 |
284400gd1 |
284400.gd |
284400gd |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 79 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{4} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1896$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$501120$ |
$1.069160$ |
$-9725425/632$ |
$0.80343$ |
$2.98961$ |
$[0, 0, 0, -5475, 164450]$ |
\(y^2=x^3-5475x+164450\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 632.2.0.?, 1896.16.0.? |
$[ ]$ |
312050.j1 |
312050j1 |
312050.j |
312050j |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 79^{2} \) |
\( - 2^{3} \cdot 5^{10} \cdot 79^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9480$ |
$16$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$21715200$ |
$2.816151$ |
$-9725425/632$ |
$0.80343$ |
$4.62478$ |
$[1, 0, 1, -5932201, -5865675452]$ |
\(y^2+xy+y=x^3-5932201x-5865675452\) |
3.4.0.a.1, 120.8.0.?, 632.2.0.?, 1185.8.0.?, 1896.8.0.?, $\ldots$ |
$[ ]$ |
312050.p1 |
312050p1 |
312050.p |
312050p |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 79^{2} \) |
\( - 2^{3} \cdot 5^{4} \cdot 79^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1896$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4343040$ |
$2.011433$ |
$-9725425/632$ |
$0.80343$ |
$3.86147$ |
$[1, 1, 1, -237288, -47020319]$ |
\(y^2+xy+y=x^3+x^2-237288x-47020319\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 237.8.0.?, 632.2.0.?, 1896.16.0.? |
$[ ]$ |
477950.bl1 |
477950bl1 |
477950.bl |
477950bl |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{4} \cdot 11^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$20856$ |
$16$ |
$0$ |
$4.780983261$ |
$1$ |
|
$0$ |
$1002240$ |
$1.025656$ |
$-9725425/632$ |
$0.80343$ |
$2.83101$ |
$[1, 0, 1, -4601, -127052]$ |
\(y^2+xy+y=x^3-4601x-127052\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 632.2.0.?, 1896.8.0.?, 20856.16.0.? |
$[(3478/3, 196537/3)]$ |
477950.cf1 |
477950cf1 |
477950.cf |
477950cf |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{10} \cdot 11^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$104280$ |
$16$ |
$0$ |
$6.742745393$ |
$1$ |
|
$0$ |
$5011200$ |
$1.830374$ |
$-9725425/632$ |
$0.80343$ |
$3.56943$ |
$[1, 1, 1, -115013, -15881469]$ |
\(y^2+xy+y=x^3+x^2-115013x-15881469\) |
3.4.0.a.1, 165.8.0.?, 632.2.0.?, 1896.8.0.?, 104280.16.0.? |
$[(9841/5, -1554/5)]$ |