| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 9386.b1 |
9386a1 |
9386.b |
9386a |
$1$ |
$1$ |
\( 2 \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 13^{2} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.798351043$ |
$1$ |
|
$2$ |
$40320$ |
$1.335991$ |
$-934165699635529/21632$ |
$1.11755$ |
$5.05615$ |
$[1, 1, 0, -103253, 12727405]$ |
\(y^2+xy=x^3+x^2-103253x+12727405\) |
8.2.0.a.1 |
$[(185, -90)]$ |
| 9386.m1 |
9386j1 |
9386.m |
9386j |
$1$ |
$1$ |
\( 2 \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 13^{2} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$766080$ |
$2.808208$ |
$-934165699635529/21632$ |
$1.11755$ |
$6.98756$ |
$[1, 0, 0, -37274521, -87595466567]$ |
\(y^2+xy=x^3-37274521x-87595466567\) |
8.2.0.a.1 |
$[ ]$ |
| 75088.m1 |
75088bc1 |
75088.m |
75088bc |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19^{2} \) |
\( - 2^{19} \cdot 13^{2} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$18385920$ |
$3.501358$ |
$-934165699635529/21632$ |
$1.11755$ |
$6.43418$ |
$[0, -1, 0, -596392336, 5606109860288]$ |
\(y^2=x^3-x^2-596392336x+5606109860288\) |
8.2.0.a.1 |
$[ ]$ |
| 75088.z1 |
75088o1 |
75088.z |
75088o |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19^{2} \) |
\( - 2^{19} \cdot 13^{2} \cdot 19^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$2.029137$ |
$-934165699635529/21632$ |
$1.11755$ |
$4.86052$ |
$[0, 1, 0, -1652056, -817858028]$ |
\(y^2=x^3+x^2-1652056x-817858028\) |
8.2.0.a.1 |
$[ ]$ |
| 84474.b1 |
84474be1 |
84474.b |
84474be |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 13^{2} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$22982400$ |
$3.357517$ |
$-934165699635529/21632$ |
$1.11755$ |
$6.21522$ |
$[1, -1, 0, -335470689, 2365077597309]$ |
\(y^2+xy=x^3-x^2-335470689x+2365077597309\) |
8.2.0.a.1 |
$[ ]$ |
| 84474.bh1 |
84474bw1 |
84474.bh |
84474bw |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 13^{2} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$7.295862034$ |
$1$ |
|
$2$ |
$1209600$ |
$1.885296$ |
$-934165699635529/21632$ |
$1.11755$ |
$4.65790$ |
$[1, -1, 1, -929282, -344569215]$ |
\(y^2+xy+y=x^3-x^2-929282x-344569215\) |
8.2.0.a.1 |
$[(4281, 270111)]$ |
| 122018.o1 |
122018i1 |
122018.o |
122018i |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{7} \cdot 13^{8} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$128701440$ |
$4.090683$ |
$-934165699635529/21632$ |
$1.11755$ |
$6.77128$ |
$[1, 0, 1, -6299394053, -192440940653648]$ |
\(y^2+xy+y=x^3-6299394053x-192440940653648\) |
8.2.0.a.1 |
$[ ]$ |
| 122018.w1 |
122018w1 |
122018.w |
122018w |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{7} \cdot 13^{8} \cdot 19^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.786704031$ |
$1$ |
|
$18$ |
$6773760$ |
$2.618465$ |
$-934165699635529/21632$ |
$1.11755$ |
$5.26285$ |
$[1, 1, 1, -17449845, 28049357851]$ |
\(y^2+xy+y=x^3+x^2-17449845x+28049357851\) |
8.2.0.a.1 |
$[(2449, 1986), (21703/3, -33244/3)]$ |
| 234650.t1 |
234650t1 |
234650.t |
234650t |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 5^{6} \cdot 13^{2} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$61286400$ |
$3.612930$ |
$-934165699635529/21632$ |
$1.11755$ |
$5.94959$ |
$[1, 1, 0, -931863025, -10949433320875]$ |
\(y^2+xy=x^3+x^2-931863025x-10949433320875\) |
8.2.0.a.1 |
$[ ]$ |
| 234650.ei1 |
234650ei1 |
234650.ei |
234650ei |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 5^{6} \cdot 13^{2} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.121653082$ |
$1$ |
|
$4$ |
$3225600$ |
$2.140709$ |
$-934165699635529/21632$ |
$1.11755$ |
$4.52092$ |
$[1, 0, 0, -2581338, 1596088292]$ |
\(y^2+xy=x^3-2581338x+1596088292\) |
8.2.0.a.1 |
$[(928, -438)]$ |
| 300352.w1 |
300352w1 |
300352.w |
300352w |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \cdot 19^{2} \) |
\( - 2^{25} \cdot 13^{2} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$8.761289046$ |
$1$ |
|
$2$ |
$7741440$ |
$2.375710$ |
$-934165699635529/21632$ |
$1.11755$ |
$4.65602$ |
$[0, -1, 0, -6608225, -6536255999]$ |
\(y^2=x^3-x^2-6608225x-6536255999\) |
8.2.0.a.1 |
$[(21528, 3134963)]$ |
| 300352.x1 |
300352x1 |
300352.x |
300352x |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \cdot 19^{2} \) |
\( - 2^{25} \cdot 13^{2} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$147087360$ |
$3.847931$ |
$-934165699635529/21632$ |
$1.11755$ |
$6.05672$ |
$[0, -1, 0, -2385569345, -44846493312959]$ |
\(y^2=x^3-x^2-2385569345x-44846493312959\) |
8.2.0.a.1 |
$[ ]$ |
| 300352.cd1 |
300352cd1 |
300352.cd |
300352cd |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \cdot 19^{2} \) |
\( - 2^{25} \cdot 13^{2} \cdot 19^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$8.739200645$ |
$1$ |
|
$2$ |
$147087360$ |
$3.847931$ |
$-934165699635529/21632$ |
$1.11755$ |
$6.05672$ |
$[0, 1, 0, -2385569345, 44846493312959]$ |
\(y^2=x^3+x^2-2385569345x+44846493312959\) |
8.2.0.a.1 |
$[(21425, 1889672)]$ |
| 300352.ce1 |
300352ce1 |
300352.ce |
300352ce |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \cdot 19^{2} \) |
\( - 2^{25} \cdot 13^{2} \cdot 19^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$3.011849768$ |
$1$ |
|
$8$ |
$7741440$ |
$2.375710$ |
$-934165699635529/21632$ |
$1.11755$ |
$4.65602$ |
$[0, 1, 0, -6608225, 6536255999]$ |
\(y^2=x^3+x^2-6608225x+6536255999\) |
8.2.0.a.1 |
$[(1469, 988), (13354/3, 323/3)]$ |
| 459914.s1 |
459914s1 |
459914.s |
459914s |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 7^{6} \cdot 13^{2} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$7.995035901$ |
$1$ |
|
$2$ |
$14515200$ |
$2.308945$ |
$-934165699635529/21632$ |
$1.11755$ |
$4.44243$ |
$[1, 0, 1, -5059423, -4380678158]$ |
\(y^2+xy+y=x^3-5059423x-4380678158\) |
8.2.0.a.1 |
$[(74852, 20432081)]$ |
| 459914.bk1 |
459914bk1 |
459914.bk |
459914bk |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 7^{6} \cdot 13^{2} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$275788800$ |
$3.781166$ |
$-934165699635529/21632$ |
$1.11755$ |
$5.79736$ |
$[1, 1, 1, -1826451530, 30043418580951]$ |
\(y^2+xy+y=x^3+x^2-1826451530x+30043418580951\) |
8.2.0.a.1 |
$[ ]$ |