Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1664.g1 |
1664f1 |
1664.g |
1664f |
$1$ |
$1$ |
\( 2^{7} \cdot 13 \) |
\( - 2^{7} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96$ |
$-0.369132$ |
$-85939808/13$ |
$0.88682$ |
$3.11737$ |
$[0, -1, 0, -46, -106]$ |
\(y^2=x^3-x^2-46x-106\) |
104.2.0.? |
$[ ]$ |
1664.i1 |
1664c1 |
1664.i |
1664c |
$1$ |
$1$ |
\( 2^{7} \cdot 13 \) |
\( - 2^{13} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.200170704$ |
$1$ |
|
$6$ |
$192$ |
$-0.022558$ |
$-85939808/13$ |
$0.88682$ |
$3.67809$ |
$[0, -1, 0, -185, 1033]$ |
\(y^2=x^3-x^2-185x+1033\) |
104.2.0.? |
$[(9, 4)]$ |
1664.l1 |
1664o1 |
1664.l |
1664o |
$1$ |
$1$ |
\( 2^{7} \cdot 13 \) |
\( - 2^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.685728240$ |
$1$ |
|
$2$ |
$96$ |
$-0.369132$ |
$-85939808/13$ |
$0.88682$ |
$3.11737$ |
$[0, 1, 0, -46, 106]$ |
\(y^2=x^3+x^2-46x+106\) |
104.2.0.? |
$[(3, 2)]$ |
1664.n1 |
1664a1 |
1664.n |
1664a |
$1$ |
$1$ |
\( 2^{7} \cdot 13 \) |
\( - 2^{13} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$2.533436542$ |
$1$ |
|
$2$ |
$192$ |
$-0.022558$ |
$-85939808/13$ |
$0.88682$ |
$3.67809$ |
$[0, 1, 0, -185, -1033]$ |
\(y^2=x^3+x^2-185x-1033\) |
104.2.0.? |
$[(17, 32)]$ |
14976.i1 |
14976ba1 |
14976.i |
14976ba |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1.153584275$ |
$1$ |
|
$2$ |
$5760$ |
$0.526748$ |
$-85939808/13$ |
$0.88682$ |
$3.52312$ |
$[0, 0, 0, -1668, 26224]$ |
\(y^2=x^3-1668x+26224\) |
104.2.0.? |
$[(24, 4)]$ |
14976.l1 |
14976z1 |
14976.l |
14976z |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$3.258656969$ |
$1$ |
|
$2$ |
$5760$ |
$0.526748$ |
$-85939808/13$ |
$0.88682$ |
$3.52312$ |
$[0, 0, 0, -1668, -26224]$ |
\(y^2=x^3-1668x-26224\) |
104.2.0.? |
$[(50, 124)]$ |
14976.z1 |
14976bf1 |
14976.z |
14976bf |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2880$ |
$0.180174$ |
$-85939808/13$ |
$0.88682$ |
$3.09054$ |
$[0, 0, 0, -417, 3278]$ |
\(y^2=x^3-417x+3278\) |
104.2.0.? |
$[ ]$ |
14976.ba1 |
14976o1 |
14976.ba |
14976o |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$10.46362409$ |
$1$ |
|
$0$ |
$2880$ |
$0.180174$ |
$-85939808/13$ |
$0.88682$ |
$3.09054$ |
$[0, 0, 0, -417, -3278]$ |
\(y^2=x^3-417x-3278\) |
104.2.0.? |
$[(30762/19, 5223424/19)]$ |
21632.n1 |
21632bd1 |
21632.n |
21632bd |
$1$ |
$1$ |
\( 2^{7} \cdot 13^{2} \) |
\( - 2^{13} \cdot 13^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.414016343$ |
$1$ |
|
$14$ |
$32256$ |
$1.259916$ |
$-85939808/13$ |
$0.88682$ |
$4.27473$ |
$[0, -1, 0, -31321, 2144297]$ |
\(y^2=x^3-x^2-31321x+2144297\) |
104.2.0.? |
$[(139, 676), (61, 676)]$ |
21632.p1 |
21632bc1 |
21632.p |
21632bc |
$1$ |
$1$ |
\( 2^{7} \cdot 13^{2} \) |
\( - 2^{7} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16128$ |
$0.913342$ |
$-85939808/13$ |
$0.88682$ |
$3.85809$ |
$[0, -1, 0, -7830, -264122]$ |
\(y^2=x^3-x^2-7830x-264122\) |
104.2.0.? |
$[ ]$ |
21632.y1 |
21632ba1 |
21632.y |
21632ba |
$1$ |
$1$ |
\( 2^{7} \cdot 13^{2} \) |
\( - 2^{13} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$32256$ |
$1.259916$ |
$-85939808/13$ |
$0.88682$ |
$4.27473$ |
$[0, 1, 0, -31321, -2144297]$ |
\(y^2=x^3+x^2-31321x-2144297\) |
104.2.0.? |
$[ ]$ |
21632.ba1 |
21632e1 |
21632.ba |
21632e |
$1$ |
$1$ |
\( 2^{7} \cdot 13^{2} \) |
\( - 2^{7} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$2.409022971$ |
$1$ |
|
$0$ |
$16128$ |
$0.913342$ |
$-85939808/13$ |
$0.88682$ |
$3.85809$ |
$[0, 1, 0, -7830, 264122]$ |
\(y^2=x^3+x^2-7830x+264122\) |
104.2.0.? |
$[(439/3, 676/3)]$ |
41600.t1 |
41600f1 |
41600.t |
41600f |
$1$ |
$1$ |
\( 2^{7} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1.913793678$ |
$1$ |
|
$2$ |
$13440$ |
$0.435587$ |
$-85939808/13$ |
$0.88682$ |
$3.08185$ |
$[0, -1, 0, -1158, 15562]$ |
\(y^2=x^3-x^2-1158x+15562\) |
104.2.0.? |
$[(21, 8)]$ |
41600.v1 |
41600bx1 |
41600.v |
41600bx |
$1$ |
$1$ |
\( 2^{7} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$8.427834611$ |
$1$ |
|
$0$ |
$26880$ |
$0.782161$ |
$-85939808/13$ |
$0.88682$ |
$3.47287$ |
$[0, -1, 0, -4633, -119863]$ |
\(y^2=x^3-x^2-4633x-119863\) |
104.2.0.? |
$[(8171/5, 719956/5)]$ |
41600.bq1 |
41600bv1 |
41600.bq |
41600bv |
$1$ |
$1$ |
\( 2^{7} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1.190980202$ |
$1$ |
|
$4$ |
$26880$ |
$0.782161$ |
$-85939808/13$ |
$0.88682$ |
$3.47287$ |
$[0, 1, 0, -4633, 119863]$ |
\(y^2=x^3+x^2-4633x+119863\) |
104.2.0.? |
$[(39, 4)]$ |
41600.bs1 |
41600bn1 |
41600.bs |
41600bn |
$1$ |
$1$ |
\( 2^{7} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$13440$ |
$0.435587$ |
$-85939808/13$ |
$0.88682$ |
$3.08185$ |
$[0, 1, 0, -1158, -15562]$ |
\(y^2=x^3+x^2-1158x-15562\) |
104.2.0.? |
$[ ]$ |
81536.w1 |
81536s1 |
81536.w |
81536s |
$1$ |
$1$ |
\( 2^{7} \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1.898772812$ |
$1$ |
|
$2$ |
$72576$ |
$0.950397$ |
$-85939808/13$ |
$0.88682$ |
$3.44473$ |
$[0, -1, 0, -9081, 336169]$ |
\(y^2=x^3-x^2-9081x+336169\) |
104.2.0.? |
$[(55, 8)]$ |
81536.y1 |
81536bn1 |
81536.y |
81536bn |
$1$ |
$1$ |
\( 2^{7} \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$18.06436298$ |
$1$ |
|
$0$ |
$36288$ |
$0.603824$ |
$-85939808/13$ |
$0.88682$ |
$3.07698$ |
$[0, -1, 0, -2270, -40886]$ |
\(y^2=x^3-x^2-2270x-40886\) |
104.2.0.? |
$[(61893425/547, 471467318734/547)]$ |
81536.bn1 |
81536r1 |
81536.bn |
81536r |
$1$ |
$1$ |
\( 2^{7} \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$6.930392593$ |
$1$ |
|
$0$ |
$72576$ |
$0.950397$ |
$-85939808/13$ |
$0.88682$ |
$3.44473$ |
$[0, 1, 0, -9081, -336169]$ |
\(y^2=x^3+x^2-9081x-336169\) |
104.2.0.? |
$[(2395/3, 108548/3)]$ |
81536.bp1 |
81536g1 |
81536.bp |
81536g |
$1$ |
$1$ |
\( 2^{7} \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36288$ |
$0.603824$ |
$-85939808/13$ |
$0.88682$ |
$3.07698$ |
$[0, 1, 0, -2270, 40886]$ |
\(y^2=x^3+x^2-2270x+40886\) |
104.2.0.? |
$[ ]$ |
194688.bf1 |
194688q1 |
194688.bf |
194688q |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$25.10554555$ |
$1$ |
|
$0$ |
$483840$ |
$1.462648$ |
$-85939808/13$ |
$0.88682$ |
$3.70328$ |
$[0, 0, 0, -70473, -7201766]$ |
\(y^2=x^3-70473x-7201766\) |
104.2.0.? |
$[(789342983182/40461, 557787243979896346/40461)]$ |
194688.bg1 |
194688cl1 |
194688.bg |
194688cl |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$483840$ |
$1.462648$ |
$-85939808/13$ |
$0.88682$ |
$3.70328$ |
$[0, 0, 0, -70473, 7201766]$ |
\(y^2=x^3-70473x+7201766\) |
104.2.0.? |
$[ ]$ |
194688.ck1 |
194688cw1 |
194688.ck |
194688cw |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$1.809223$ |
$-85939808/13$ |
$0.88682$ |
$4.04476$ |
$[0, 0, 0, -281892, -57614128]$ |
\(y^2=x^3-281892x-57614128\) |
104.2.0.? |
$[ ]$ |
194688.cn1 |
194688cy1 |
194688.cn |
194688cy |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$1.809223$ |
$-85939808/13$ |
$0.88682$ |
$4.04476$ |
$[0, 0, 0, -281892, 57614128]$ |
\(y^2=x^3-281892x+57614128\) |
104.2.0.? |
$[ ]$ |
201344.w1 |
201344k1 |
201344.w |
201344k |
$1$ |
$1$ |
\( 2^{7} \cdot 11^{2} \cdot 13 \) |
\( - 2^{7} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1.709696520$ |
$1$ |
|
$2$ |
$138240$ |
$0.829816$ |
$-85939808/13$ |
$0.88682$ |
$3.07128$ |
$[0, -1, 0, -5606, 163462]$ |
\(y^2=x^3-x^2-5606x+163462\) |
104.2.0.? |
$[(81, 484)]$ |
201344.y1 |
201344l1 |
201344.y |
201344l |
$1$ |
$1$ |
\( 2^{7} \cdot 11^{2} \cdot 13 \) |
\( - 2^{13} \cdot 11^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$276480$ |
$1.176390$ |
$-85939808/13$ |
$0.88682$ |
$3.41181$ |
$[0, -1, 0, -22425, -1285271]$ |
\(y^2=x^3-x^2-22425x-1285271\) |
104.2.0.? |
$[ ]$ |
201344.bf1 |
201344bt1 |
201344.bf |
201344bt |
$1$ |
$1$ |
\( 2^{7} \cdot 11^{2} \cdot 13 \) |
\( - 2^{7} \cdot 11^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$0.829816$ |
$-85939808/13$ |
$0.88682$ |
$3.07128$ |
$[0, 1, 0, -5606, -163462]$ |
\(y^2=x^3+x^2-5606x-163462\) |
104.2.0.? |
$[ ]$ |
201344.bj1 |
201344s1 |
201344.bj |
201344s |
$1$ |
$1$ |
\( 2^{7} \cdot 11^{2} \cdot 13 \) |
\( - 2^{13} \cdot 11^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$276480$ |
$1.176390$ |
$-85939808/13$ |
$0.88682$ |
$3.41181$ |
$[0, 1, 0, -22425, 1285271]$ |
\(y^2=x^3+x^2-22425x+1285271\) |
104.2.0.? |
$[ ]$ |
374400.em1 |
374400em1 |
374400.em |
374400em |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$18.33227251$ |
$1$ |
|
$0$ |
$403200$ |
$0.984894$ |
$-85939808/13$ |
$0.88682$ |
$3.06783$ |
$[0, 0, 0, -10425, -409750]$ |
\(y^2=x^3-10425x-409750\) |
104.2.0.? |
$[(77557454/487, 644650777658/487)]$ |
374400.en1 |
374400en1 |
374400.en |
374400en |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$10.49933613$ |
$1$ |
|
$0$ |
$806400$ |
$1.331467$ |
$-85939808/13$ |
$0.88682$ |
$3.39191$ |
$[0, 0, 0, -41700, -3278000]$ |
\(y^2=x^3-41700x-3278000\) |
104.2.0.? |
$[(68574/17, 2123132/17)]$ |
374400.ha1 |
374400ha1 |
374400.ha |
374400ha |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$403200$ |
$0.984894$ |
$-85939808/13$ |
$0.88682$ |
$3.06783$ |
$[0, 0, 0, -10425, 409750]$ |
\(y^2=x^3-10425x+409750\) |
104.2.0.? |
$[ ]$ |
374400.hb1 |
374400hb1 |
374400.hb |
374400hb |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$4.432837276$ |
$1$ |
|
$2$ |
$806400$ |
$1.331467$ |
$-85939808/13$ |
$0.88682$ |
$3.39191$ |
$[0, 0, 0, -41700, 3278000]$ |
\(y^2=x^3-41700x+3278000\) |
104.2.0.? |
$[(-4, 1856)]$ |
480896.i1 |
480896i1 |
480896.i |
480896i |
$1$ |
$1$ |
\( 2^{7} \cdot 13 \cdot 17^{2} \) |
\( - 2^{13} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$13.16612272$ |
$1$ |
|
$0$ |
$844800$ |
$1.394049$ |
$-85939808/13$ |
$0.88682$ |
$3.38441$ |
$[0, -1, 0, -53561, -4753943]$ |
\(y^2=x^3-x^2-53561x-4753943\) |
104.2.0.? |
$[(985951/21, 973311704/21)]$ |
480896.k1 |
480896k1 |
480896.k |
480896k |
$1$ |
$1$ |
\( 2^{7} \cdot 13 \cdot 17^{2} \) |
\( - 2^{7} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$3.935111724$ |
$1$ |
|
$2$ |
$422400$ |
$1.047476$ |
$-85939808/13$ |
$0.88682$ |
$3.06654$ |
$[0, -1, 0, -13390, 600938]$ |
\(y^2=x^3-x^2-13390x+600938\) |
104.2.0.? |
$[(89, 326)]$ |
480896.v1 |
480896v1 |
480896.v |
480896v |
$1$ |
$1$ |
\( 2^{7} \cdot 13 \cdot 17^{2} \) |
\( - 2^{13} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$2.530731790$ |
$1$ |
|
$2$ |
$844800$ |
$1.394049$ |
$-85939808/13$ |
$0.88682$ |
$3.38441$ |
$[0, 1, 0, -53561, 4753943]$ |
\(y^2=x^3+x^2-53561x+4753943\) |
104.2.0.? |
$[(131, 52)]$ |
480896.x1 |
480896x1 |
480896.x |
480896x |
$1$ |
$1$ |
\( 2^{7} \cdot 13 \cdot 17^{2} \) |
\( - 2^{7} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$422400$ |
$1.047476$ |
$-85939808/13$ |
$0.88682$ |
$3.06654$ |
$[0, 1, 0, -13390, -600938]$ |
\(y^2=x^3+x^2-13390x-600938\) |
104.2.0.? |
$[ ]$ |