Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5850.i1 |
5850a2 |
5850.i |
5850a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2 \cdot 3^{9} \cdot 5^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$13.55854540$ |
$1$ |
|
$0$ |
$38880$ |
$1.663858$ |
$-8538302475/26$ |
$0.97351$ |
$5.63161$ |
$[1, -1, 0, -245742, -46827334]$ |
\(y^2+xy=x^3-x^2-245742x-46827334\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? |
$[(3743875/31, 7123548589/31)]$ |
5850.r1 |
5850g1 |
5850.r |
5850g |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2 \cdot 3^{3} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$312$ |
$16$ |
$0$ |
$1.703561494$ |
$1$ |
|
$6$ |
$2592$ |
$0.309834$ |
$-8538302475/26$ |
$0.97351$ |
$3.75844$ |
$[1, -1, 0, -1092, 14166]$ |
\(y^2+xy=x^3-x^2-1092x+14166\) |
3.8.0-3.a.1.2, 312.16.0.? |
$[(15, 24)]$ |
5850.bg1 |
5850bc1 |
5850.bg |
5850bc |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12960$ |
$1.114552$ |
$-8538302475/26$ |
$0.97351$ |
$4.87170$ |
$[1, -1, 1, -27305, 1743447]$ |
\(y^2+xy+y=x^3-x^2-27305x+1743447\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? |
$[ ]$ |
5850.bx1 |
5850bi2 |
5850.bx |
5850bi |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2 \cdot 3^{9} \cdot 5^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$312$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$7776$ |
$0.859139$ |
$-8538302475/26$ |
$0.97351$ |
$4.51835$ |
$[1, -1, 1, -9830, -372653]$ |
\(y^2+xy+y=x^3-x^2-9830x-372653\) |
3.8.0-3.a.1.1, 312.16.0.? |
$[ ]$ |
46800.bf1 |
46800cs2 |
46800.bf |
46800cs |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{4} \cdot 13 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1.474526596$ |
$1$ |
|
$12$ |
$186624$ |
$1.552286$ |
$-8538302475/26$ |
$0.97351$ |
$4.41812$ |
$[0, 0, 0, -157275, 24007050]$ |
\(y^2=x^3-157275x+24007050\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 312.16.0.? |
$[(231, 54), (229, 8)]$ |
46800.bt1 |
46800cr1 |
46800.bt |
46800cr |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$62208$ |
$1.002981$ |
$-8538302475/26$ |
$0.97351$ |
$3.80515$ |
$[0, 0, 0, -17475, -889150]$ |
\(y^2=x^3-17475x-889150\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 312.16.0.? |
$[ ]$ |
46800.du1 |
46800ca2 |
46800.du |
46800ca |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$933120$ |
$2.357006$ |
$-8538302475/26$ |
$0.97351$ |
$5.31611$ |
$[0, 0, 0, -3931875, 3000881250]$ |
\(y^2=x^3-3931875x+3000881250\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? |
$[ ]$ |
46800.ep1 |
46800bz1 |
46800.ep |
46800bz |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$311040$ |
$1.807699$ |
$-8538302475/26$ |
$0.97351$ |
$4.70314$ |
$[0, 0, 0, -436875, -111143750]$ |
\(y^2=x^3-436875x-111143750\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? |
$[ ]$ |
76050.v1 |
76050t2 |
76050.v |
76050t |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{9} \cdot 5^{4} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1306368$ |
$2.141613$ |
$-8538302475/26$ |
$0.97351$ |
$4.85649$ |
$[1, -1, 0, -1661217, -823701709]$ |
\(y^2+xy=x^3-x^2-1661217x-823701709\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 39.8.0-3.a.1.2, 312.16.0.? |
$[ ]$ |
76050.cq1 |
76050g1 |
76050.cq |
76050g |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$2.362375948$ |
$1$ |
|
$0$ |
$2177280$ |
$2.397026$ |
$-8538302475/26$ |
$0.97351$ |
$5.12919$ |
$[1, -1, 0, -4614492, 3816510166]$ |
\(y^2+xy=x^3-x^2-4614492x+3816510166\) |
3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? |
$[(4967/2, -3953/2)]$ |
76050.eg1 |
76050dx1 |
76050.eg |
76050dx |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{4} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$3.598614727$ |
$1$ |
|
$0$ |
$435456$ |
$1.592308$ |
$-8538302475/26$ |
$0.97351$ |
$4.27000$ |
$[1, -1, 1, -184580, 30568997]$ |
\(y^2+xy+y=x^3-x^2-184580x+30568997\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 39.8.0-3.a.1.1, 312.16.0.? |
$[(4125/4, 8449/4)]$ |
76050.fh1 |
76050dl2 |
76050.fh |
76050dl |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{9} \cdot 5^{10} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$6531840$ |
$2.946335$ |
$-8538302475/26$ |
$0.97351$ |
$5.71568$ |
$[1, -1, 1, -41530430, -103004244053]$ |
\(y^2+xy+y=x^3-x^2-41530430x-103004244053\) |
3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? |
$[ ]$ |
187200.dk1 |
187200gq1 |
187200.dk |
187200gq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$8.206280647$ |
$1$ |
|
$0$ |
$497664$ |
$1.349554$ |
$-8538302475/26$ |
$0.97351$ |
$3.71321$ |
$[0, 0, 0, -69900, -7113200]$ |
\(y^2=x^3-69900x-7113200\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 156.8.0.?, 312.16.0.? |
$[(8876/5, 447624/5)]$ |
187200.dm1 |
187200pe2 |
187200.dm |
187200pe |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$7464960$ |
$2.703579$ |
$-8538302475/26$ |
$0.97351$ |
$5.05162$ |
$[0, 0, 0, -15727500, -24007050000]$ |
\(y^2=x^3-15727500x-24007050000\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? |
$[ ]$ |
187200.fn1 |
187200gv2 |
187200.fn |
187200gv |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$0.533974571$ |
$1$ |
|
$4$ |
$1492992$ |
$1.898861$ |
$-8538302475/26$ |
$0.97351$ |
$4.25618$ |
$[0, 0, 0, -629100, 192056400]$ |
\(y^2=x^3-629100x+192056400\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 156.8.0.?, 312.16.0.? |
$[(570, 4320)]$ |
187200.fp1 |
187200pr1 |
187200.fp |
187200pr |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$2.154274$ |
$-8538302475/26$ |
$0.97351$ |
$4.50865$ |
$[0, 0, 0, -1747500, 889150000]$ |
\(y^2=x^3-1747500x+889150000\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? |
$[ ]$ |
187200.kz1 |
187200oq2 |
187200.kz |
187200oq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1492992$ |
$1.898861$ |
$-8538302475/26$ |
$0.97351$ |
$4.25618$ |
$[0, 0, 0, -629100, -192056400]$ |
\(y^2=x^3-629100x-192056400\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 78.8.0.?, 312.16.0.? |
$[ ]$ |
187200.lb1 |
187200hs1 |
187200.lb |
187200hs |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$12.00540094$ |
$1$ |
|
$0$ |
$2488320$ |
$2.154274$ |
$-8538302475/26$ |
$0.97351$ |
$4.50865$ |
$[0, 0, 0, -1747500, -889150000]$ |
\(y^2=x^3-1747500x-889150000\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[(2054554/29, 2367362592/29)]$ |
187200.nc1 |
187200ot1 |
187200.nc |
187200ot |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$497664$ |
$1.349554$ |
$-8538302475/26$ |
$0.97351$ |
$3.71321$ |
$[0, 0, 0, -69900, 7113200]$ |
\(y^2=x^3-69900x+7113200\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 78.8.0.?, 312.16.0.? |
$[ ]$ |
187200.ne1 |
187200if2 |
187200.ne |
187200if |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$10.41447803$ |
$1$ |
|
$0$ |
$7464960$ |
$2.703579$ |
$-8538302475/26$ |
$0.97351$ |
$5.05162$ |
$[0, 0, 0, -15727500, 24007050000]$ |
\(y^2=x^3-15727500x+24007050000\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[(3851196/41, 18993744/41)]$ |
286650.a1 |
286650a1 |
286650.a |
286650a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{3} \cdot 5^{4} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$5.396979092$ |
$1$ |
|
$2$ |
$933120$ |
$1.282789$ |
$-8538302475/26$ |
$0.97351$ |
$3.52354$ |
$[1, -1, 0, -53517, -4751909]$ |
\(y^2+xy=x^3-x^2-53517x-4751909\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 312.8.0.?, 2184.16.0.? |
$[(2543, 126398)]$ |
286650.ij1 |
286650ij2 |
286650.ij |
286650ij |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{9} \cdot 5^{10} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$6.474114232$ |
$1$ |
|
$0$ |
$13996800$ |
$2.636814$ |
$-8538302475/26$ |
$0.97351$ |
$4.81658$ |
$[1, -1, 0, -12041367, 16085858291]$ |
\(y^2+xy=x^3-x^2-12041367x+16085858291\) |
3.4.0.a.1, 105.8.0.?, 312.8.0.?, 10920.16.0.? |
$[(242995/11, -794704/11)]$ |
286650.iz1 |
286650iz1 |
286650.iz |
286650iz |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4665600$ |
$2.087509$ |
$-8538302475/26$ |
$0.97351$ |
$4.29201$ |
$[1, -1, 1, -1337930, -595326553]$ |
\(y^2+xy+y=x^3-x^2-1337930x-595326553\) |
3.4.0.a.1, 105.8.0.?, 312.8.0.?, 10920.16.0.? |
$[ ]$ |
286650.rk1 |
286650rk2 |
286650.rk |
286650rk |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{9} \cdot 5^{4} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2799360$ |
$1.832094$ |
$-8538302475/26$ |
$0.97351$ |
$4.04810$ |
$[1, -1, 1, -481655, 128783197]$ |
\(y^2+xy+y=x^3-x^2-481655x+128783197\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 312.8.0.?, 2184.16.0.? |
$[ ]$ |