Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
12138.s1 |
12138t1 |
12138.s |
12138t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{5} \cdot 7^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$73440$ |
$1.523176$ |
$-83521/95256$ |
$1.18021$ |
$4.42204$ |
$[1, 1, 1, -1740, 1239813]$ |
\(y^2+xy+y=x^3+x^2-1740x+1239813\) |
24.2.0.b.1 |
$[ ]$ |
12138.y1 |
12138v1 |
12138.y |
12138v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{5} \cdot 7^{2} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.155589396$ |
$1$ |
|
$6$ |
$4320$ |
$0.106570$ |
$-83521/95256$ |
$1.18021$ |
$2.61439$ |
$[1, 0, 0, -6, 252]$ |
\(y^2+xy=x^3-6x+252\) |
24.2.0.b.1 |
$[(6, 18)]$ |
36414.u1 |
36414bm1 |
36414.u |
36414bm |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{11} \cdot 7^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$587520$ |
$2.072483$ |
$-83521/95256$ |
$1.18021$ |
$4.58710$ |
$[1, -1, 0, -15660, -33490616]$ |
\(y^2+xy=x^3-x^2-15660x-33490616\) |
24.2.0.b.1 |
$[ ]$ |
36414.ba1 |
36414q1 |
36414.ba |
36414q |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{11} \cdot 7^{2} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1.527934630$ |
$1$ |
|
$10$ |
$34560$ |
$0.655876$ |
$-83521/95256$ |
$1.18021$ |
$2.96853$ |
$[1, -1, 0, -54, -6804]$ |
\(y^2+xy=x^3-x^2-54x-6804\) |
24.2.0.b.1 |
$[(45, 261), (99/2, 549/2)]$ |
84966.dc1 |
84966cs1 |
84966.dc |
84966cs |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{5} \cdot 7^{8} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$2.553859717$ |
$1$ |
|
$2$ |
$207360$ |
$1.079525$ |
$-83521/95256$ |
$1.18021$ |
$3.19484$ |
$[1, 1, 1, -295, -86731]$ |
\(y^2+xy+y=x^3+x^2-295x-86731\) |
24.2.0.b.1 |
$[(349, 6342)]$ |
84966.dt1 |
84966ec1 |
84966.dt |
84966ec |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{5} \cdot 7^{8} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.708345151$ |
$1$ |
|
$4$ |
$3525120$ |
$2.496132$ |
$-83521/95256$ |
$1.18021$ |
$4.69257$ |
$[1, 0, 0, -85261, -425511703]$ |
\(y^2+xy=x^3-85261x-425511703\) |
24.2.0.b.1 |
$[(9272, 887507)]$ |
97104.p1 |
97104by1 |
97104.p |
97104by |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{15} \cdot 3^{5} \cdot 7^{2} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1.028502234$ |
$1$ |
|
$4$ |
$103680$ |
$0.799717$ |
$-83521/95256$ |
$1.18021$ |
$2.86530$ |
$[0, -1, 0, -96, -16128]$ |
\(y^2=x^3-x^2-96x-16128\) |
24.2.0.b.1 |
$[(32, 112)]$ |
97104.cm1 |
97104cm1 |
97104.cm |
97104cm |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{15} \cdot 3^{5} \cdot 7^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1762560$ |
$2.216324$ |
$-83521/95256$ |
$1.18021$ |
$4.34561$ |
$[0, 1, 0, -27840, -79403724]$ |
\(y^2=x^3+x^2-27840x-79403724\) |
24.2.0.b.1 |
$[ ]$ |
254898.bd1 |
254898bd1 |
254898.bd |
254898bd |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{11} \cdot 7^{8} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1.339507219$ |
$1$ |
|
$4$ |
$1658880$ |
$1.628832$ |
$-83521/95256$ |
$1.18021$ |
$3.44240$ |
$[1, -1, 0, -2655, 2339077]$ |
\(y^2+xy=x^3-x^2-2655x+2339077\) |
24.2.0.b.1 |
$[(-19, 1553)]$ |
254898.cu1 |
254898cu1 |
254898.cu |
254898cu |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{11} \cdot 7^{8} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$28200960$ |
$3.045437$ |
$-83521/95256$ |
$1.18021$ |
$4.80795$ |
$[1, -1, 0, -767349, 11488815981]$ |
\(y^2+xy=x^3-x^2-767349x+11488815981\) |
24.2.0.b.1 |
$[ ]$ |
291312.by1 |
291312by1 |
291312.by |
291312by |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{15} \cdot 3^{11} \cdot 7^{2} \cdot 17^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$2.099520642$ |
$1$ |
|
$12$ |
$14100480$ |
$2.765629$ |
$-83521/95256$ |
$1.18021$ |
$4.49007$ |
$[0, 0, 0, -250563, 2143649986]$ |
\(y^2=x^3-250563x+2143649986\) |
24.2.0.b.1 |
$[(-289, 46818), (4335, 287266)]$ |
291312.eg1 |
291312eg1 |
291312.eg |
291312eg |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{15} \cdot 3^{11} \cdot 7^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$829440$ |
$1.349024$ |
$-83521/95256$ |
$1.18021$ |
$3.13900$ |
$[0, 0, 0, -867, 436322]$ |
\(y^2=x^3-867x+436322\) |
24.2.0.b.1 |
$[ ]$ |
303450.bs1 |
303450bs1 |
303450.bs |
303450bs |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{5} \cdot 5^{6} \cdot 7^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$604800$ |
$0.911288$ |
$-83521/95256$ |
$1.18021$ |
$2.71272$ |
$[1, 1, 0, -150, 31500]$ |
\(y^2+xy=x^3+x^2-150x+31500\) |
24.2.0.b.1 |
$[ ]$ |
303450.bu1 |
303450bu1 |
303450.bu |
303450bu |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{5} \cdot 5^{6} \cdot 7^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1.229268127$ |
$1$ |
|
$4$ |
$10281600$ |
$2.327896$ |
$-83521/95256$ |
$1.18021$ |
$4.05942$ |
$[1, 0, 1, -43501, 155063648]$ |
\(y^2+xy+y=x^3-43501x+155063648\) |
24.2.0.b.1 |
$[(-554, 3311)]$ |
388416.bk1 |
388416bk1 |
388416.bk |
388416bk |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{21} \cdot 3^{5} \cdot 7^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$6.989233415$ |
$1$ |
|
$2$ |
$14100480$ |
$2.562897$ |
$-83521/95256$ |
$1.18021$ |
$4.20067$ |
$[0, -1, 0, -111361, -635118431]$ |
\(y^2=x^3-x^2-111361x-635118431\) |
24.2.0.b.1 |
$[(2288, 105273)]$ |
388416.cl1 |
388416cl1 |
388416.cl |
388416cl |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{21} \cdot 3^{5} \cdot 7^{2} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$2.821647959$ |
$1$ |
|
$2$ |
$829440$ |
$1.146290$ |
$-83521/95256$ |
$1.18021$ |
$2.87981$ |
$[0, -1, 0, -385, 129409]$ |
\(y^2=x^3-x^2-385x+129409\) |
24.2.0.b.1 |
$[(-49, 168)]$ |
388416.gb1 |
388416gb1 |
388416.gb |
388416gb |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{21} \cdot 3^{5} \cdot 7^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14100480$ |
$2.562897$ |
$-83521/95256$ |
$1.18021$ |
$4.20067$ |
$[0, 1, 0, -111361, 635118431]$ |
\(y^2=x^3+x^2-111361x+635118431\) |
24.2.0.b.1 |
$[ ]$ |
388416.he1 |
388416he1 |
388416.he |
388416he |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{21} \cdot 3^{5} \cdot 7^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$829440$ |
$1.146290$ |
$-83521/95256$ |
$1.18021$ |
$2.87981$ |
$[0, 1, 0, -385, -129409]$ |
\(y^2=x^3+x^2-385x-129409\) |
24.2.0.b.1 |
$[ ]$ |