Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
36414.r1 |
36414a1 |
36414.r |
36414a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{3} \cdot 7^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$6.282720307$ |
$1$ |
|
$2$ |
$2774016$ |
$2.864277$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$5.87566$ |
$[1, -1, 0, -17872545, 29093256829]$ |
\(y^2+xy=x^3-x^2-17872545x+29093256829\) |
24.2.0.b.1 |
$[(-3763, 209372)]$ |
36414.be1 |
36414l1 |
36414.be |
36414l |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{3} \cdot 7^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$13.43373861$ |
$1$ |
|
$0$ |
$47158272$ |
$4.280884$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$7.49423$ |
$[1, -1, 0, -5165165559, 142914510138717]$ |
\(y^2+xy=x^3-x^2-5165165559x+142914510138717\) |
24.2.0.b.1 |
$[(4864053/13, 9313996362/13)]$ |
36414.cf1 |
36414cb1 |
36414.cf |
36414cb |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{9} \cdot 7^{4} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$141474816$ |
$4.830193$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$8.12184$ |
$[1, -1, 1, -46486490033, -3858645287255327]$ |
\(y^2+xy+y=x^3-x^2-46486490033x-3858645287255327\) |
24.2.0.b.1 |
$[ ]$ |
36414.ci1 |
36414br1 |
36414.ci |
36414br |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{9} \cdot 7^{4} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8322048$ |
$3.413586$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$6.50328$ |
$[1, -1, 1, -160852907, -785357081477]$ |
\(y^2+xy+y=x^3-x^2-160852907x-785357081477\) |
24.2.0.b.1 |
$[ ]$ |
254898.bf1 |
254898bf1 |
254898.bf |
254898bf |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{3} \cdot 7^{10} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$20.18629343$ |
$1$ |
|
$0$ |
$2263597056$ |
$5.253838$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$7.26065$ |
$[1, -1, 0, -253093112400, -49019170791355136]$ |
\(y^2+xy=x^3-x^2-253093112400x-49019170791355136\) |
24.2.0.b.1 |
$[(1959582413105/848, 2691757066254548641/848)]$ |
254898.cp1 |
254898cp1 |
254898.cp |
254898cp |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{3} \cdot 7^{10} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$133152768$ |
$3.837234$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$5.89510$ |
$[1, -1, 0, -875754714, -9977235582924]$ |
\(y^2+xy=x^3-x^2-875754714x-9977235582924\) |
24.2.0.b.1 |
$[ ]$ |
254898.fn1 |
254898fn1 |
254898.fn |
254898fn |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{9} \cdot 7^{10} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.549253209$ |
$1$ |
|
$6$ |
$399458304$ |
$4.386536$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$6.42461$ |
$[1, -1, 1, -7881792428, 269393242531375]$ |
\(y^2+xy+y=x^3-x^2-7881792428x+269393242531375\) |
24.2.0.b.1 |
$[(63317, 4885589)]$ |
254898.gu1 |
254898gu1 |
254898.gu |
254898gu |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{9} \cdot 7^{10} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6790791168$ |
$5.803146$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$7.79017$ |
$[1, -1, 1, -2277838011602, 1323519889204600273]$ |
\(y^2+xy+y=x^3-x^2-2277838011602x+1323519889204600273\) |
24.2.0.b.1 |
$[ ]$ |
291312.bz1 |
291312bz1 |
291312.bz |
291312bz |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{55} \cdot 3^{9} \cdot 7^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$8.265048337$ |
$1$ |
|
$0$ |
$3395395584$ |
$5.523338$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$7.44063$ |
$[0, 0, 0, -743783840523, 246954042168181434]$ |
\(y^2=x^3-743783840523x+246954042168181434\) |
24.2.0.b.1 |
$[(120310877157/479, 3675633532010496/479)]$ |
291312.ci1 |
291312ci1 |
291312.ci |
291312ci |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{55} \cdot 3^{3} \cdot 7^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$21.67301344$ |
$1$ |
|
$0$ |
$66576384$ |
$3.557426$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$5.56567$ |
$[0, 0, 0, -285960723, -1861682476334]$ |
\(y^2=x^3-285960723x-1861682476334\) |
24.2.0.b.1 |
$[(25692358919/1147, 61963657738626/1147)]$ |
291312.du1 |
291312du1 |
291312.du |
291312du |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{55} \cdot 3^{3} \cdot 7^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$253.4809374$ |
$1$ |
|
$0$ |
$1131798528$ |
$4.974030$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$6.91674$ |
$[0, 0, 0, -82642648947, -9146446006228942]$ |
\(y^2=x^3-82642648947x-9146446006228942\) |
24.2.0.b.1 |
$[(2703831368927958954298326223758068512727484878080770567634146711812235614842805130018460358315042790451973406631/38638005293709112814197869504189006874846746571671527, 138702786795920391619844891020361538965990955302272111161658514032491255404111124570048058235796102596543102107295825413014736470657710170244732271405645364246975858854/38638005293709112814197869504189006874846746571671527)]$ |
291312.ed1 |
291312ed1 |
291312.ed |
291312ed |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{55} \cdot 3^{9} \cdot 7^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$6.646353212$ |
$1$ |
|
$0$ |
$199729152$ |
$4.106728$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$6.08957$ |
$[0, 0, 0, -2573646507, 50265426861018]$ |
\(y^2=x^3-2573646507x+50265426861018\) |
24.2.0.b.1 |
$[(223626549/79, 992489766912/79)]$ |