Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5070.i1 |
5070j1 |
5070.i |
5070j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{4} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$87360$ |
$1.900578$ |
$-79370312059129/12960$ |
$1.18524$ |
$6.15686$ |
$[1, 0, 1, -836554, -294572068]$ |
\(y^2+xy+y=x^3-836554x-294572068\) |
40.2.0.a.1 |
$[ ]$ |
5070.x1 |
5070x1 |
5070.x |
5070x |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{4} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6720$ |
$0.618102$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.35290$ |
$[1, 0, 0, -4950, -134460]$ |
\(y^2+xy=x^3-4950x-134460\) |
40.2.0.a.1 |
$[ ]$ |
15210.l1 |
15210p1 |
15210.l |
15210p |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{10} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$1.167408$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.54081$ |
$[1, -1, 0, -44550, 3630420]$ |
\(y^2+xy=x^3-x^2-44550x+3630420\) |
40.2.0.a.1 |
$[ ]$ |
15210.bk1 |
15210bt1 |
15210.bk |
15210bt |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{10} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$698880$ |
$2.449883$ |
$-79370312059129/12960$ |
$1.18524$ |
$6.13896$ |
$[1, -1, 1, -7528982, 7953445829]$ |
\(y^2+xy+y=x^3-x^2-7528982x+7953445829\) |
40.2.0.a.1 |
$[ ]$ |
25350.b1 |
25350j1 |
25350.b |
25350j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{4} \cdot 5^{7} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$5.738402462$ |
$1$ |
|
$2$ |
$161280$ |
$1.422821$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.61432$ |
$[1, 1, 0, -123750, -16807500]$ |
\(y^2+xy=x^3+x^2-123750x-16807500\) |
40.2.0.a.1 |
$[(4455, 294210)]$ |
25350.cp1 |
25350cb1 |
25350.cp |
25350cb |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{4} \cdot 5^{7} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2096640$ |
$2.705296$ |
$-79370312059129/12960$ |
$1.18524$ |
$6.13196$ |
$[1, 1, 1, -20913838, -36821508469]$ |
\(y^2+xy+y=x^3+x^2-20913838x-36821508469\) |
40.2.0.a.1 |
$[ ]$ |
40560.o1 |
40560bl1 |
40560.o |
40560bl |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{17} \cdot 3^{4} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2096640$ |
$2.593723$ |
$-79370312059129/12960$ |
$1.18524$ |
$5.73416$ |
$[0, -1, 0, -13384856, 18852612336]$ |
\(y^2=x^3-x^2-13384856x+18852612336\) |
40.2.0.a.1 |
$[ ]$ |
40560.p1 |
40560bx1 |
40560.p |
40560bx |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{17} \cdot 3^{4} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.689110649$ |
$1$ |
|
$6$ |
$161280$ |
$1.311249$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.28374$ |
$[0, -1, 0, -79200, 8605440]$ |
\(y^2=x^3-x^2-79200x+8605440\) |
40.2.0.a.1 |
$[(162, 18)]$ |
76050.dc1 |
76050bw1 |
76050.dc |
76050bw |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{10} \cdot 5^{7} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16773120$ |
$3.254601$ |
$-79370312059129/12960$ |
$1.18524$ |
$6.11906$ |
$[1, -1, 0, -188224542, 993992504116]$ |
\(y^2+xy=x^3-x^2-188224542x+993992504116\) |
40.2.0.a.1 |
$[ ]$ |
76050.de1 |
76050fe1 |
76050.de |
76050fe |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{10} \cdot 5^{7} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.311060534$ |
$1$ |
|
$8$ |
$1290240$ |
$1.972128$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.74977$ |
$[1, -1, 1, -1113755, 452688747]$ |
\(y^2+xy+y=x^3-x^2-1113755x+452688747\) |
40.2.0.a.1 |
$[(599, 150)]$ |
121680.b1 |
121680ee1 |
121680.b |
121680ee |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{17} \cdot 3^{10} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$7.840797090$ |
$1$ |
|
$0$ |
$1290240$ |
$1.860556$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.44477$ |
$[0, 0, 0, -712803, -231634078]$ |
\(y^2=x^3-712803x-231634078\) |
40.2.0.a.1 |
$[(48673/7, 2181024/7)]$ |
121680.fs1 |
121680fk1 |
121680.fs |
121680fk |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{17} \cdot 3^{10} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$16773120$ |
$3.143028$ |
$-79370312059129/12960$ |
$1.18524$ |
$5.75910$ |
$[0, 0, 0, -120463707, -508900069366]$ |
\(y^2=x^3-120463707x-508900069366\) |
40.2.0.a.1 |
$[ ]$ |
162240.bz1 |
162240ij1 |
162240.bz |
162240ij |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{23} \cdot 3^{4} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$13.00072661$ |
$1$ |
|
$0$ |
$1290240$ |
$1.657824$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.13540$ |
$[0, -1, 0, -316801, -68526719]$ |
\(y^2=x^3-x^2-316801x-68526719\) |
40.2.0.a.1 |
$[(2056171/43, 2454620940/43)]$ |
162240.cc1 |
162240gs1 |
162240.cc |
162240gs |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{23} \cdot 3^{4} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16773120$ |
$2.940296$ |
$-79370312059129/12960$ |
$1.18524$ |
$5.41821$ |
$[0, -1, 0, -53539425, -150767359263]$ |
\(y^2=x^3-x^2-53539425x-150767359263\) |
40.2.0.a.1 |
$[ ]$ |
162240.eg1 |
162240y1 |
162240.eg |
162240y |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{23} \cdot 3^{4} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.530946305$ |
$1$ |
|
$4$ |
$1290240$ |
$1.657824$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.13540$ |
$[0, 1, 0, -316801, 68526719]$ |
\(y^2=x^3+x^2-316801x+68526719\) |
40.2.0.a.1 |
$[(287, 1152)]$ |
162240.ii1 |
162240w1 |
162240.ii |
162240w |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{23} \cdot 3^{4} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16773120$ |
$2.940296$ |
$-79370312059129/12960$ |
$1.18524$ |
$5.41821$ |
$[0, 1, 0, -53539425, 150767359263]$ |
\(y^2=x^3+x^2-53539425x+150767359263\) |
40.2.0.a.1 |
$[ ]$ |
202800.fs1 |
202800bn1 |
202800.fs |
202800bn |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{17} \cdot 3^{4} \cdot 5^{7} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.749979065$ |
$1$ |
|
$4$ |
$50319360$ |
$3.398441$ |
$-79370312059129/12960$ |
$1.18524$ |
$5.76917$ |
$[0, 1, 0, -334621408, 2355907299188]$ |
\(y^2=x^3+x^2-334621408x+2355907299188\) |
40.2.0.a.1 |
$[(10703, 25350)]$ |
202800.kl1 |
202800db1 |
202800.kl |
202800db |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{17} \cdot 3^{4} \cdot 5^{7} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.808601344$ |
$1$ |
|
$4$ |
$3870720$ |
$2.115967$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.50978$ |
$[0, 1, 0, -1980008, 1071719988]$ |
\(y^2=x^3+x^2-1980008x+1071719988\) |
40.2.0.a.1 |
$[(814, 96)]$ |
248430.bw1 |
248430bw1 |
248430.bw |
248430bw |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{4} \cdot 5 \cdot 7^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$3.913237855$ |
$1$ |
|
$0$ |
$20442240$ |
$2.873531$ |
$-79370312059129/12960$ |
$1.18524$ |
$5.16788$ |
$[1, 1, 0, -40991122, 100997228116]$ |
\(y^2+xy=x^3+x^2-40991122x+100997228116\) |
40.2.0.a.1 |
$[(12955/2, 364253/2)]$ |
248430.go1 |
248430go1 |
248430.go |
248430go |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{4} \cdot 5 \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1.375746247$ |
$1$ |
|
$2$ |
$1572480$ |
$1.591057$ |
$-79370312059129/12960$ |
$1.18524$ |
$3.92907$ |
$[1, 1, 1, -242551, 45877229]$ |
\(y^2+xy+y=x^3+x^2-242551x+45877229\) |
40.2.0.a.1 |
$[(287, -54)]$ |
486720.a1 |
486720a1 |
486720.a |
486720a |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{23} \cdot 3^{10} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$134184960$ |
$3.489605$ |
$-79370312059129/12960$ |
$1.18524$ |
$5.46702$ |
$[0, 0, 0, -481854828, 4071200554928]$ |
\(y^2=x^3-481854828x+4071200554928\) |
40.2.0.a.1 |
$[ ]$ |
486720.il1 |
486720il1 |
486720.il |
486720il |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{23} \cdot 3^{10} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$31.15048406$ |
$1$ |
|
$0$ |
$134184960$ |
$3.489605$ |
$-79370312059129/12960$ |
$1.18524$ |
$5.46702$ |
$[0, 0, 0, -481854828, -4071200554928]$ |
\(y^2=x^3-481854828x-4071200554928\) |
40.2.0.a.1 |
$[(13155211421293578/715261, 269062408394258635661440/715261)]$ |
486720.im1 |
486720im1 |
486720.im |
486720im |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{23} \cdot 3^{10} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$10321920$ |
$2.207130$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.29183$ |
$[0, 0, 0, -2851212, -1853072624]$ |
\(y^2=x^3-2851212x-1853072624\) |
40.2.0.a.1 |
$[ ]$ |
486720.qx1 |
486720qx1 |
486720.qx |
486720qx |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{23} \cdot 3^{10} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$4.399784083$ |
$1$ |
|
$0$ |
$10321920$ |
$2.207130$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.29183$ |
$[0, 0, 0, -2851212, 1853072624]$ |
\(y^2=x^3-2851212x+1853072624\) |
40.2.0.a.1 |
$[(47230/7, 203904/7)]$ |