| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 1406.f1 |
1406f1 |
1406.f |
1406f |
$1$ |
$1$ |
\( 2 \cdot 19 \cdot 37 \) |
\( - 2^{7} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.263753157$ |
$1$ |
|
$6$ |
$224$ |
$-0.063524$ |
$-761048497/3329408$ |
$0.85394$ |
$3.11751$ |
$[1, 0, 0, -19, -95]$ |
\(y^2+xy=x^3-19x-95\) |
152.2.0.? |
$[(18, 65)]$ |
| 11248.f1 |
11248d1 |
11248.f |
11248d |
$1$ |
$1$ |
\( 2^{4} \cdot 19 \cdot 37 \) |
\( - 2^{19} \cdot 19 \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.562135037$ |
$1$ |
|
$16$ |
$5376$ |
$0.629622$ |
$-761048497/3329408$ |
$0.85394$ |
$3.31424$ |
$[0, -1, 0, -304, 6080]$ |
\(y^2=x^3-x^2-304x+6080\) |
152.2.0.? |
$[(8, 64), (2, 74)]$ |
| 12654.e1 |
12654g1 |
12654.e |
12654g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 19 \cdot 37 \) |
\( - 2^{7} \cdot 3^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1.511194287$ |
$1$ |
|
$4$ |
$6720$ |
$0.485782$ |
$-761048497/3329408$ |
$0.85394$ |
$3.09017$ |
$[1, -1, 0, -171, 2565]$ |
\(y^2+xy=x^3-x^2-171x+2565\) |
152.2.0.? |
$[(-17, 27)]$ |
| 26714.c1 |
26714i1 |
26714.c |
26714i |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{7} \cdot 19^{7} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.518603588$ |
$1$ |
|
$4$ |
$80640$ |
$1.408695$ |
$-761048497/3329408$ |
$0.85394$ |
$3.95017$ |
$[1, 1, 0, -6866, 637876]$ |
\(y^2+xy=x^3+x^2-6866x+637876\) |
152.2.0.? |
$[(359, 6499)]$ |
| 35150.g1 |
35150k1 |
35150.g |
35150k |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \cdot 37 \) |
\( - 2^{7} \cdot 5^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.076535895$ |
$1$ |
|
$0$ |
$28672$ |
$0.741195$ |
$-761048497/3329408$ |
$0.85394$ |
$3.08137$ |
$[1, 1, 0, -475, -11875]$ |
\(y^2+xy=x^3+x^2-475x-11875\) |
152.2.0.? |
$[(175/2, 1675/2)]$ |
| 44992.n1 |
44992k1 |
44992.n |
44992k |
$1$ |
$1$ |
\( 2^{6} \cdot 19 \cdot 37 \) |
\( - 2^{25} \cdot 19 \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$43008$ |
$0.976196$ |
$-761048497/3329408$ |
$0.85394$ |
$3.27358$ |
$[0, -1, 0, -1217, -47423]$ |
\(y^2=x^3-x^2-1217x-47423\) |
152.2.0.? |
$[ ]$ |
| 44992.bh1 |
44992bm1 |
44992.bh |
44992bm |
$1$ |
$1$ |
\( 2^{6} \cdot 19 \cdot 37 \) |
\( - 2^{25} \cdot 19 \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$43008$ |
$0.976196$ |
$-761048497/3329408$ |
$0.85394$ |
$3.27358$ |
$[0, 1, 0, -1217, 47423]$ |
\(y^2=x^3+x^2-1217x+47423\) |
152.2.0.? |
$[ ]$ |
| 52022.f1 |
52022c1 |
52022.f |
52022c |
$1$ |
$1$ |
\( 2 \cdot 19 \cdot 37^{2} \) |
\( - 2^{7} \cdot 19 \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$9.317935898$ |
$1$ |
|
$0$ |
$306432$ |
$1.741934$ |
$-761048497/3329408$ |
$0.85394$ |
$4.07598$ |
$[1, 0, 1, -26040, -4733946]$ |
\(y^2+xy+y=x^3-26040x-4733946\) |
152.2.0.? |
$[(2444364/23, 3791195910/23)]$ |
| 68894.q1 |
68894n1 |
68894.q |
68894n |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 19 \cdot 37 \) |
\( - 2^{7} \cdot 7^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.892948573$ |
$1$ |
|
$4$ |
$84672$ |
$0.909431$ |
$-761048497/3329408$ |
$0.85394$ |
$3.07646$ |
$[1, 1, 1, -932, 31653]$ |
\(y^2+xy+y=x^3+x^2-932x+31653\) |
152.2.0.? |
$[(21, 137)]$ |
| 101232.bb1 |
101232t1 |
101232.bb |
101232t |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) |
\( - 2^{19} \cdot 3^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$7.071942672$ |
$1$ |
|
$0$ |
$161280$ |
$1.178928$ |
$-761048497/3329408$ |
$0.85394$ |
$3.25433$ |
$[0, 0, 0, -2739, -161422]$ |
\(y^2=x^3-2739x-161422\) |
152.2.0.? |
$[(4601/8, 58867/8)]$ |
| 170126.e1 |
170126k1 |
170126.e |
170126k |
$1$ |
$1$ |
\( 2 \cdot 11^{2} \cdot 19 \cdot 37 \) |
\( - 2^{7} \cdot 11^{6} \cdot 19 \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$322560$ |
$1.135424$ |
$-761048497/3329408$ |
$0.85394$ |
$3.07072$ |
$[1, 0, 1, -2302, 124144]$ |
\(y^2+xy+y=x^3-2302x+124144\) |
152.2.0.? |
$[ ]$ |
| 213712.x1 |
213712u1 |
213712.x |
213712u |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{19} \cdot 19^{7} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$2.101841$ |
$-761048497/3329408$ |
$0.85394$ |
$3.95862$ |
$[0, 1, 0, -109864, -41043788]$ |
\(y^2=x^3+x^2-109864x-41043788\) |
152.2.0.? |
$[ ]$ |
| 237614.i1 |
237614i1 |
237614.i |
237614i |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19 \cdot 37 \) |
\( - 2^{7} \cdot 13^{6} \cdot 19 \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$459648$ |
$1.218950$ |
$-761048497/3329408$ |
$0.85394$ |
$3.06881$ |
$[1, 0, 1, -3215, -205502]$ |
\(y^2+xy+y=x^3-3215x-205502\) |
152.2.0.? |
$[ ]$ |
| 240426.cf1 |
240426cf1 |
240426.cf |
240426cf |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 2^{7} \cdot 3^{6} \cdot 19^{7} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.109883355$ |
$1$ |
|
$0$ |
$2419200$ |
$1.958002$ |
$-761048497/3329408$ |
$0.85394$ |
$3.78167$ |
$[1, -1, 1, -61799, -17284449]$ |
\(y^2+xy+y=x^3-x^2-61799x-17284449\) |
152.2.0.? |
$[(3655/3, 128074/3)]$ |
| 281200.bo1 |
281200bo1 |
281200.bo |
281200bo |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 37 \) |
\( - 2^{19} \cdot 5^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.571697343$ |
$1$ |
|
$2$ |
$688128$ |
$1.434341$ |
$-761048497/3329408$ |
$0.85394$ |
$3.23362$ |
$[0, 1, 0, -7608, 744788]$ |
\(y^2=x^3+x^2-7608x+744788\) |
152.2.0.? |
$[(748, 20350)]$ |
| 316350.dp1 |
316350dp1 |
316350.dp |
316350dp |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 37 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.931167154$ |
$1$ |
|
$4$ |
$860160$ |
$1.290501$ |
$-761048497/3329408$ |
$0.85394$ |
$3.06725$ |
$[1, -1, 1, -4280, 316347]$ |
\(y^2+xy+y=x^3-x^2-4280x+316347\) |
152.2.0.? |
$[(99, 875)]$ |
| 404928.z1 |
404928z1 |
404928.z |
404928z |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \cdot 37 \) |
\( - 2^{25} \cdot 3^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.002370928$ |
$1$ |
|
$2$ |
$1290240$ |
$1.525503$ |
$-761048497/3329408$ |
$0.85394$ |
$3.22702$ |
$[0, 0, 0, -10956, 1291376]$ |
\(y^2=x^3-10956x+1291376\) |
152.2.0.? |
$[(-82, 1280)]$ |
| 404928.bf1 |
404928bf1 |
404928.bf |
404928bf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \cdot 37 \) |
\( - 2^{25} \cdot 3^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$5.121551743$ |
$1$ |
|
$2$ |
$1290240$ |
$1.525503$ |
$-761048497/3329408$ |
$0.85394$ |
$3.22702$ |
$[0, 0, 0, -10956, -1291376]$ |
\(y^2=x^3-10956x-1291376\) |
152.2.0.? |
$[(4434, 295168)]$ |
| 406334.w1 |
406334w1 |
406334.w |
406334w |
$1$ |
$1$ |
\( 2 \cdot 17^{2} \cdot 19 \cdot 37 \) |
\( - 2^{7} \cdot 17^{6} \cdot 19 \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$985600$ |
$1.353083$ |
$-761048497/3329408$ |
$0.85394$ |
$3.06595$ |
$[1, 1, 1, -5497, -461241]$ |
\(y^2+xy+y=x^3+x^2-5497x-461241\) |
152.2.0.? |
$[ ]$ |
| 416176.n1 |
416176n1 |
416176.n |
416176n |
$1$ |
$1$ |
\( 2^{4} \cdot 19 \cdot 37^{2} \) |
\( - 2^{19} \cdot 19 \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$6.776562538$ |
$1$ |
|
$0$ |
$7354368$ |
$2.435081$ |
$-761048497/3329408$ |
$0.85394$ |
$4.06377$ |
$[0, -1, 0, -416632, 302972528]$ |
\(y^2=x^3-x^2-416632x+302972528\) |
152.2.0.? |
$[(-250406/17, 17525938/17)]$ |
| 468198.cc1 |
468198cc1 |
468198.cc |
468198cc |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 19 \cdot 37^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 19 \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1.620685775$ |
$1$ |
|
$4$ |
$9192960$ |
$2.291241$ |
$-761048497/3329408$ |
$0.85394$ |
$3.89491$ |
$[1, -1, 1, -234356, 127816535]$ |
\(y^2+xy+y=x^3-x^2-234356x+127816535\) |
152.2.0.? |
$[(3469, 200877)]$ |