| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 20640.f1 |
20640b1 |
20640.f |
20640b |
$1$ |
$1$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{7} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$102144$ |
$1.598537$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.53572$ |
$[0, -1, 0, -69256, -7034444]$ |
\(y^2=x^3-x^2-69256x-7034444\) |
1720.2.0.? |
$[ ]$ |
$1$ |
| 20640.o1 |
20640f1 |
20640.o |
20640f |
$1$ |
$1$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{7} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$102144$ |
$1.598537$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.53572$ |
$[0, 1, 0, -69256, 7034444]$ |
\(y^2=x^3+x^2-69256x+7034444\) |
1720.2.0.? |
$[ ]$ |
$1$ |
| 41280.z1 |
41280cq1 |
41280.z |
41280cq |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{7} \cdot 43^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$0.116353344$ |
$1$ |
|
$32$ |
$408576$ |
$1.945110$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.63122$ |
$[0, -1, 0, -277025, 56552577]$ |
\(y^2=x^3-x^2-277025x+56552577\) |
1720.2.0.? |
$[(584, 9675), (-491, 8600)]$ |
$1$ |
| 41280.dn1 |
41280dg1 |
41280.dn |
41280dg |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{7} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$408576$ |
$1.945110$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.63122$ |
$[0, 1, 0, -277025, -56552577]$ |
\(y^2=x^3+x^2-277025x-56552577\) |
1720.2.0.? |
$[ ]$ |
$1$ |
| 61920.ba1 |
61920bx1 |
61920.ba |
61920bx |
$1$ |
$1$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 43 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{7} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$817152$ |
$2.147842$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.68152$ |
$[0, 0, 0, -623307, -190553294]$ |
\(y^2=x^3-623307x-190553294\) |
1720.2.0.? |
$[ ]$ |
$1$ |
| 61920.cb1 |
61920cd1 |
61920.cb |
61920cd |
$1$ |
$1$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 43 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{7} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$0.295386359$ |
$1$ |
|
$6$ |
$817152$ |
$2.147842$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.68152$ |
$[0, 0, 0, -623307, 190553294]$ |
\(y^2=x^3-623307x+190553294\) |
1720.2.0.? |
$[(553, 3870)]$ |
$1$ |
| 103200.be1 |
103200bx1 |
103200.be |
103200bx |
$1$ |
$1$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{13} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$2.494183102$ |
$1$ |
|
$2$ |
$2451456$ |
$2.403255$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.73986$ |
$[0, -1, 0, -1731408, 882768312]$ |
\(y^2=x^3-x^2-1731408x+882768312\) |
1720.2.0.? |
$[(-1443, 19350)]$ |
$1$ |
| 103200.bs1 |
103200cm1 |
103200.bs |
103200cm |
$1$ |
$1$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{13} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$5.187046756$ |
$1$ |
|
$2$ |
$2451456$ |
$2.403255$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.73986$ |
$[0, 1, 0, -1731408, -882768312]$ |
\(y^2=x^3+x^2-1731408x-882768312\) |
1720.2.0.? |
$[(3318, 172950)]$ |
$1$ |
| 123840.p1 |
123840fp1 |
123840.p |
123840fp |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 43 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3268608$ |
$2.494415$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.75945$ |
$[0, 0, 0, -2493228, -1524426352]$ |
\(y^2=x^3-2493228x-1524426352\) |
1720.2.0.? |
$[ ]$ |
$1$ |
| 123840.da1 |
123840et1 |
123840.da |
123840et |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 43 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$3.732176934$ |
$1$ |
|
$2$ |
$3268608$ |
$2.494415$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.75945$ |
$[0, 0, 0, -2493228, 1524426352]$ |
\(y^2=x^3-2493228x+1524426352\) |
1720.2.0.? |
$[(854, 4248)]$ |
$1$ |
| 206400.x1 |
206400dy1 |
206400.x |
206400dy |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{13} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1.165812438$ |
$1$ |
|
$4$ |
$9805824$ |
$2.749828$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.81124$ |
$[0, -1, 0, -6925633, -7055220863]$ |
\(y^2=x^3-x^2-6925633x-7055220863\) |
1720.2.0.? |
$[(45457, 9675000)]$ |
$1$ |
| 206400.ju1 |
206400ci1 |
206400.ju |
206400ci |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{13} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1.656377693$ |
$1$ |
|
$2$ |
$9805824$ |
$2.749828$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.81124$ |
$[0, 1, 0, -6925633, 7055220863]$ |
\(y^2=x^3+x^2-6925633x+7055220863\) |
1720.2.0.? |
$[(1418, 9375)]$ |
$1$ |
| 309600.x1 |
309600x1 |
309600.x |
309600x |
$1$ |
$1$ |
\( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 43 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{13} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$19611648$ |
$2.952560$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.84936$ |
$[0, 0, 0, -15582675, 23819161750]$ |
\(y^2=x^3-15582675x+23819161750\) |
1720.2.0.? |
$[ ]$ |
$1$ |
| 309600.er1 |
309600er1 |
309600.er |
309600er |
$1$ |
$1$ |
\( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 43 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{13} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$9.556547524$ |
$1$ |
|
$0$ |
$19611648$ |
$2.952560$ |
$-71751706663500872/503130234375$ |
$0.97262$ |
$4.84936$ |
$[0, 0, 0, -15582675, -23819161750]$ |
\(y^2=x^3-15582675x-23819161750\) |
1720.2.0.? |
$[(29270710/79, 39019275000/79)]$ |
$1$ |